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Abstract—Handling energy resource management (ERM) in
today’s energy systems is complex and challenging due to uncer-
tainties arising from the high penetration of distributed energy
resources. Such penetration introduces various uncertain factors,
such as renewable energy, energy storage, and electric vehicles,
making it difficult for traditional mathematical methods to find
effective solutions. However, Evolutionary Algorithms (EAs) have
shown good performance in solving this problem. Therefore,
in this paper, a self-adaptive collaborative differential evolution
algorithm (SADEA) is proposed to solve the ERM problem under
uncertainty. In SADEA, a three-stage adaptive collaboration
strategy, includes boundary randomization stage, knowledge-
assisted collaboration stage, and range restructuration stage,
is used to generate collaborative solutions. The collaborative
solutions generated in the above stages will jointly participate in
the perturbation of DE strategies to explore promising solutions.
In addition, different DE strategies are selected according to
count values and random factors. At the end of the algorithm,
boundary control, elite selection and retention are used to ensure
the legitimacy and robustness of solutions. The proposed SADEA
is compared to several state-of-the-art algorithms on a real-world
distribution network located in Salamanca, Spain. The results
show that SADEA is superior to its competitors in terms of the
objective function, ranking index, and convergence. In summary,
the proposed algorithm is effective to handle the ERM problem
under uncertainty.

Index Terms—Energy resource management, smart grid, un-
certainty scheduling, differential evolution, optimization.

I. INTRODUCTION

IN recent years, with the continuous development of tech-
nology, the power grid has evolved into an advanced

electric grid, namely smart grid (SG) [1]. The SG is the power
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grid that uses advanced commutation technology and control
programs, such as demand response (DR), voltage optimiza-
tion control, fault location, isolation and service restoration.
Its main feature is the large penetration of distributed energy
resources (DERs). However, DERs (e.g., wind and solar gen-
eration) are, by nature, intermittent, which makes it difficult
to operate SG reliably and economically [2], [3]. Thus, for
embracing DERs, the energy resources management (ERM)
system is proposed to automatically negotiate actions, with
the goal of achieving a dynamic supply-demand balance [4].

In SG, ERM simply refers to a real-time control system
which is used to manage energy resources. It can be modeled
as a mixed integer nonlinear problem (MINLP) where profits
are to be maximized through control and automation capa-
bilities [5]. To achieve such a goal in real-world scenarios,
ERM must interact with various resources under uncertainty,
such as electricity market prices, DR procedures, renewable
energy generation, energy storage systems (ESSs) and electric
vehicles (EVs) [6], [7].

Currently, many studies have made various attempts to
tackle the aforementioned uncertainties in resource manage-
ment. Most of them use traditional mathematical methods,
such as robust optimization models [8], [9] and stochastic
models [10], [11]. Typically, these models are solved by using
deterministic mathematical methods. Nevertheless, traditional
mathematical methods face several challenges, including the
management of large amounts of resources, high level of
accuracy for uncertainty representation, and integration of
nonlinear functions (e.g., alternating current power flow and
generator quadratic functions) [12]. The above limitations
drive researchers to seek for different approaches to tackle this
problem, and it has been found that Evolutionary Algorithms
(EAs) are capable of effectively solving this problem [13].

Inspired by biological evolutionary mechanisms, EAs adopt
operations like crossover, mutation, selection, abandonment,
and retention to improve solutions. Well-known EAs include
Genetic Algorithms (GA) [14], [15], Differential Evolution
(DE) algorithms [16], Particle Swarm Optimization (PSO)
algorithms [17], and Iterated Greedy (IG) algorithms [18]–
[20]). However, population-based GA, DE, and PSO cannot
focus all their efforts on a particular solution during the evo-
lution. The IG algorithm, a single-individual EA, focuses all its
efforts on a single solution, which is one of the main reasons
for its strong local search ability [21]. However, existing IG
algorithms tend to achieve good results in solving discrete
problems, and yet not continuous problems such as the ERM
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problem under uncertainty. One of the obvious drawbacks is its
poor global search ability due to the lack of solution diversity
[22]. Therefore, if using a single-individual mechanism, it is
necessary to design perturbation strategies that can improve
the global search ability of the algorithm. Inspired by [12], we
find that the DE strategy is effective in improving the global
search ability of the IG algorithm. Therefore, we utilize the
single-individual mechanism with the DE strategies, hoping to
solve the ERM problem, efficiently.

The major challenges for the ERM problems are summa-
rized as follows.

• Extreme scenarios may endanger the operation or even
destroy the aggregator. This requires a risk-based opti-
mization model to protect aggregators from events with
low probability and yet high impacts.

• So far, only a few EAs have considered risk-based
methodologies when solving ERM under uncertainty.
EAs are very subject to the constraints of the ERM.
If certain conditions change, the search ability of EAs
cannot be fully utilized.

• Population-based EAs may not be able to focus on a
promising neighborhood of current solutions, which will
distract the computational performance of algorithms and
result in a stagnation of the entire evolution. In addition,
according to the results in [23], the global search ability
of the perturbation strategy also needs to be further
improved.

Nevertheless, DE strategies still have many advantages, such
as good perturbation and stable convergence. At present, the
variants of DE, e.g., HyDE [12] and ReSaDE [24] (won first
place in the WCCI (CEC)/ECCO 2022 competition) have been
used to solve the uncertain ERM problem and achieved good
results. Therefore, this paper designs the methods based on DE
strategies. Given the above challenges, our study transforms
the population-based DE into a single individual to avoid
dispersed search. During the search process, collaborative
solutions participate in the evolution by using DE strategies,
which improve the local and global search abilities. Based on
the above, a Self-Adaptive Collaborative Differential Evolution
Algorithm (SADEA) is designed to solve the ERM under
uncertainty. Contributions of this paper are summarized as
follows.

• To choose the most appropriate DE strategy for a certain
stage, a three-stage adaptive collaboration strategy is
designed. In the first stage, three collaborative solutions
are utilized to effectively improve solution diversity. In
the second stage, a historical archive is used to explore
potentially promising solutions while accelerating the
search process. In the third stage, the range restructura-
tion prevents solutions from falling into local optimum.

• To improve the local search ability, we use a single-
individual mechanism. It allows the algorithm to focus all
its efforts on a single solution. Compared to population-
based optimization algorithms, it can enable the solution
to evolve more quickly. Meanwhile, it can reduce the
tedious steps, making it suitable for power dispatch in
various scenarios.

Fig. 1. The ERM problem [25]

• To overcome the weak global search abilities of single-
individual EAs, three DE strategies are proposed. The
proposed DE strategies significantly increase the diversity
of solutions and prevent them from falling into local
optimum.

The remainder of this paper is organized as follows. Section
II introduces the related work of the ERM problem. The
definitions of the problem are given in Section III. Section
IV provides a case study of the distribution network, which is
a real-world problem to be addressed in this paper. Section V
lists details of SADEA. In Section VI, the results show that
the proposed algorithm performs better than the state-of-the-
art algorithms in solving the ERM problem. The conclusion
and future work are given in Section VII.

II. RELATED WORK

In this section, the related work will be divided into
two categories: A) Risk-based methodologies, B) EAs-based
methodologies.

A. Risk-based Methodologies

Risk-based methodologies have been commonly used in
electrical systems to reduce natural disasters or utility outages
[26]–[28]. The emergence of extreme scenarios can have a
huge impact on the management of electric network operators
[29]. Recently, several studies have used risk-based method-
ologies for aggregators, such as wind power generation [30],
conventional hydropower [31], and the uncertainty of micro-
grid planning [32]. The work in [33] considered the uncertainty
of load and pool market prices, and proposed a risk-based
approach to achieve equal cost in an uncertain scenario. This
approach increases the retailers’ cost but reduces the risk to
almost zero. In other words, although the cost increases to a
certain extent, it is still worthwhile to reduce the risk to zero
for extreme scenarios.

In recent years, risk-based measurement mechanisms such
as value-at-risk (V aRα) have been proposed. However, V aRα

can only measure risk when the expected cost does not exceed
the confidence level α for all scenarios. On the contrary,
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conditional V aRα (CV aRα) allows measurement of risk
beyond confidence level scenarios [34], [35]. It shows that,
by introducing CV aRα, the impact of extreme scenarios
will be minimized. Therefore, in this paper, both V aRα and
CV aRα risk assessment parameters are considered to protect
the aggregator. Fig. 1 gives the energy resource Buy/Sell in
ERM, and the communication link to the aggregator [25]. The
final optimization objective is to maximize the profit, or, to
minimize the difference between operational costs (OC) and
incomes (In) in each scenario, which takes into account penalty
values and risk assessment parameters.

B. EAs Utilized to Solve the Uncertainty ERM

In EAs, CUMDANCauchy [36] generates new individu-
als not only by sampling from the learned distribution but
also by using the individual neighborhoods in a ring cell
structure. It achieves better performance compared to variants
of PSO or variable neighborhood search algorithms [37]–
[39]. In [23], the Cooperative Co-evolution Strategies with
Time-dependent Grouping (CCSTG), inspired by cooperative
co-evolution frameworks, groups the decision variables into
subcomponents. It generates new individuals from the uni-
variate marginal distribution in the subpopulation. Population
regeneration star-guided optimization (Presto) (which won the
PES-GM/CEC/GECCO 2021 competition) [23] is inspired by
PSO and DE algorithms and seeks to increase the diversity
of solutions. Hybrid-Adaptive Differential Evolution (HyDE)
algorithm [12] uses multiple individuals for a series of evolu-
tions, and although it increases the diversity of solutions, to a
certain extent, it sacrifices local search ability. In addition, after
one evolution, only improved solutions replace the original
ones, while unimproved solutions continue to participate in the
next evolution. Therefore, the increase of the solution diversity
is limited, and evaluations on multiple solutions will disperse
the algorithm’s search ability. In addition, the aforementioned
EAs do not consider risk-based methodologies.

Restart-assisted Self-adaptive Differential Evolution (Re-
SaDE) algorithm, which won the first place in the WCCI
(CEC)/ECCO 2022 competition [24], divides the variables into
four different groups based on their bounded upper and lower
bounds and improves them separately. Although this algorithm
is tested in ERM with risk assessment parameters, it has
several limitations. For example, the grouping is subject to the
range of variables. It may lead to performance degradation and
scalability issues. In addition, it is difficult to transplant due
to its complex structure and strong dependence on problems.
Therefore, this paper proposes SADEA to fill these gaps.
Compared with ReSaDE, SADEA has a simpler structure,
making it easier to solve other similar problems.

III. PROBLEM DESCRIPTION

Risk-based ERM under uncertainty is formulated as a
MINLP where the objective for the aggregator is to generate
a day-ahead energy schedule for DERs, EVs, ESSs and DR
to maximize the expected profits, subject to constraints such
as resource limits, energy balance [40]. To protect aggrega-
tors from impacts caused by uncertainty, the risk assessment

parameters V aRα and CV aRα are introduced. In general,
V aRα deals with the scenarios where events with a high
probability of occurrence but a reasonably small effects (such
as small error in renewable forecast). CV aRα considers
events with a low probability, but have high impacts (such
as hurricanes, thunderstorms, and errors in the forecast).

In this section, the ERM problem will be divided into three
parts to illustrate: A) risk-based ERM and fitness function, B)
scenario generation, and C) encoding of the solution.

A. Risk-based ERM and Fitness Function

Due to space limitations, the notation of the ERM problem
has been included in the supplementary material. Readers
can refer to the original literature [35] or the supplementary
material for details.

As shown in [35], the risk-neutral strategy considers the
uncertain behavior of renewable energy generation, electric ve-
hicles, market prices, load consumption, etc. These stochastic
behaviors are considered using various methods that account
for different scenarios and their associated probabilities of oc-
currence. When a risk is not taken into account, the aggregator
formulates its schedule based on an expected scenario. In this
case, the cost and the objective function (OF) values are based
on the expected cost, which is formulated as follows:

Ztot
s = ZOC

s − ZIn
s + Ps (1)

ZEx
s =

Ns∑
s=1

(
ρs · Ztot

s

)
(2)

where Ztot
s is the total OF value of each scenario s; ZOC

s

represents the operational costs; ZIn
s represents the income

and Ps indicates the penalty for bound violations. In Equation
(2), ZEx

s indicates the expected OF; ρs denotes the probability
of the corresponding scenario s, and Ns denotes the total
number of scenarios.

Risk-aversion strategies consider the risks associated with
uncertainty. In (1-α)% of the scenarios with the highest costs,
CV aRα is an additional cost added to ZEx. Its calculation is
as follows.

CV aRα

(
Ztot
s

)
= V aRα

(
Ztot
s

)
+

1

1− α

Ns∑
s=1

(ρs · φ) (3)

where:

φ =

{
Ztot

s − ZEx
s − V aRα

(
Ztot

s

)
, Ztot

s ≥ ZEx
s + V aRα

(
Ztot

s

)
0, otherwise

(4)

V aRα

(
Ztot

s

)
= z-score (α) · std

(
Ztot

s

)
(5)

When the total costs of scenario s exceed the sum of expected costs
and VaR, φ indicates the cost in the worst scenarios. Otherwise, the
value of φ equals 0. In addition, the z-score is calculated using the
norminv() function in MATLAB with α = 95%. std() represents the
standard deviation function. Considering the parameter CV aRα, the
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Fig. 2. Solution encoding

value of the OF for this ERM problem varies with the degree of
risk aversion considered. The calculation formula for OF is shown
as follows.

OF = ZEx
s + β · CV aRα

(
Ztot

s

)
(6)

where the parameter β denotes the percentage of risk aversion and
takes values from 0 to 1. When β takes the value of 0, OF value
is merely equal to the expected cost and it’s a risk-neutral strategy.
Conversely, when β takes the value of 1, the strategy is 100% risk
averse to provide the safest solution in the worst extreme scenarios.
According to [35], this paper also sets the value of β to 1. In addition,
details on different constraints in the ERM problem can also be found
in the above literature.

B. Scenario Generation
In the ERM problem, the aggregator needs to handle the uncer-

tainty of multiple resources, such as renewable energy generation,
market prices, electric vehicle charging, and load demands. Due to
the stochastic nature of the above resources, it is almost impossible
to find an exact or perfect solution. Therefore, this paper uses Monte
Carlo Simulation (MCS) method [3] to solve the uncertainty of this
problem through scenario-based optimization techniques. First, MCS
is used to generate a large number of scenarios, and the probability
distribution function of the prediction error is:

xs = xforecasted (t) + xerror,s (t) (7)

where xforecasted (t) indicates the mean forecasted value in each
instant t, xerror,s (t) represents the value of the error, which concerns
each scenario s along with a normal distribution function having zero-
mean noise and standard deviation σ, i.e., N (0, σ) .

After a large-scale scenario generation, a scenario reduction strat-
egy is used to reduce the number of scenarios. Generally, a larger
number of scenarios imply higher accuracy, but also higher memory
and time. Therefore, it is necessary to apply scenario-reduction strate-
gies to eliminate scenarios with a low probability of occurrence. This
is achieved by grouping statistically similar scenarios and reducing
the number of scenarios. Similarly, the number of constraints is
reduced. Details of this strategy can be found in [41].

C. Encoding of a Solution
This section describes the encoding method of solutions. It is

known that depending on the problem characteristics, information
is encoded into a solution with different dimensions to measure their
performance. Undoubtedly, the information contained in the solution
is related to resources, including generator active power, generator’s
state, and EVs charge/discharge. Fig. 2 shows the encoding of a
solution, in which all variables should be between the minimum and
maximum values. Except for the state of the generator (represented

by the binary state, where 1 indicates a connection to the SG and 0
indicates no connection), all variables are continuous and changed
according to the specified boundaries. There are 24 periods in a
solution. In each period, there are 570 sequentially repeated variables.
Thus, the total number of variables in one solution is 24*570=13680,
with 21 binary variables indicating the generator’s state, 21 con-
tinuous variables constituting the generator’s active power, and 500
continuous variables representing EVs charge/discharge. Load reduc-
tion uses 25-dimension continuous variables to represent its situation.
The dimension number of the ESSs charge/discharge and electricity
market is 2 and 1, respectively. It should be noted that DR is only
assumed to be load reduction. For electricity market variables, assume
that positive values are electricity sold in the market and negative
values are electricity purchased.

IV. CASE STUDY
In our case study, the smart city medium voltage (MV) and

distribution network (DN) located in the BISITE Laboratory in
Salamanca, Spain is selected [42]. In this DN, there is a 30 megavolt-
ampere (MVA) substation, 15 DG units (13 photovoltaic power plants
and 2 wind farms), and four 1 MVAr capacitor banks on bus 1 (these
capacitor banks are not included in this problem because reactive
power is not considered). In terms of consumption, the DN has 25
different loads, consisting of office buildings, residences, shopping
centers, fire stations, and hospitals. In addition, the high penetration
of EVs and renewable energy sources are considered in this case
study. Smart city has seven charging stations to charge EVs, with
a 50kW fast charging station at each connection point and four 7.2
kW slow charging stations. Fig. 3 shows the 13-bus 30 kV single-line
diagram.

First, 5,000 scenarios are generated, and are subsequently reduced
to 150 scenarios using the GAMS/SCENRED [25] technique. Further,
it is reduced to 15 scenarios to save computational time. Aggregators
must manage various resources and meet consumption by purchasing
electricity from external suppliers and purchasing/selling energy in
the market. Table I considers the energy resource data related to
the aggregator of the previous day’s formula in extreme scenarios.
Noteworthy, m.u. means monetary unit.

To solve the aggregator energy resource management problem, we
propose SADEA. Details of its implementation will be introduced in
the next section.

V. METHODOLOGY
Inspired by IG and DE algorithms, the proposed SADEA in-

corporates a single individual mechanism as well as DE strategies.
With these strategies, more precise adjustments can be made to the
variables (e.g., renewable energy generation, energy storage, electric
vehicle charging and discharging). This improves the algorithm’s
global and local search abilities, and effectively reduces the cost of
aggregators. In addition, SADEA uses a boundary control strategy to
ensure the legitimacy of the solution. Most importantly, the proposed
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TABLE I
ENERGY RESOURCE DATA [35]

Energy Resources
Prices (m.u./MWh) Capacity (MW) Forecasted (MW)

Unitsmin-max min-max min-max

Wind 29-29 0.00-0.81 2
Photovoltaic 31-31 0.30-3.07 13
External supplier 50-90 0.00-30.00 1
ESSs Charge 110-110 0.00-1.25 2

Discharge 60-60 0.00-1.25
EVs Charge 0-0 0.01-0.05 500

Discharge 60-60 0.01-0.05
Demand response Load reduction 100-100 0.00-1.21 25
Load 0-0 0.01-2.38 25
Electricity Market 44.78-156.91 1

Fig. 3. Single-line diagram of the 13-bus 30-kV DN [42]

algorithm is able to overcome the difficulties of uncertainty and
variability in the ERM problem and find effective solutions in extreme
scenarios.

A. Framework of the Proposed Algorithm
The framework of the proposed SADEA is outlined in Algorithm

1. We first explain the notations used. G represents the total number
of generations, or the termination condition; F = {F1, F2, F3}
and F CR are self-adaptive control parameters (used in DE), which
take values between 0 and 1. xc = [xc,1, xc,2, ..., xc,D], where D
represents the number of dimensions, denotes the current solution;
xbest denotes the obtained global optimal solution, and xnew is
a new solution. ϑ, an archive with size Ex count (a parameter),
records solutions that have been successfully updated in the previous
generations.

Lines 1-5 in Algorithm 1 aim at initializing xc, xbest, ϑ and
some internal variables. More specifically, according to Line 1,
only one initial solution is used, and values of all its variables are
randomly generated between minimum and maximum boundaries.
This is achieved by the function BoundaryRandomization ().
After obtaining xc, its OF value is calculated by f () (see Equation
(6)), and assigned to OFgbest. ϑ← zeros (2, D) means to generate
an archive of historical data with 2 solutions (according to the
experiment in Section VI, we suggest setting the size of ϑ to 2). As

Algorithm 1 The framework of SADEA
Input: self-adaptive control parameters F, F CR, the
total number of generations G
Output: OFgbest

Begin:
/*Initialization*/

1: xc ← BoundaryRandomization (1, D);
2: xbest ← xc;
3: OFgbest ← f (xc);
4: ϑ← zeros (2, D);
5: gen = 1, e = 0, count = 0;

/*Evolution*/
6: while gen ⩽ G do
7: {F′, F CR′} ← jDE (F, F CR);

/*TSAC(): Three-stage adaptive collaboration strategy*/
8: xnew ← TSAC(F′, F CR′, ϑ, xc, xbest, count);
9: OFcurrent ← f (xnew);

/*Elite Selection and Retention*/
10: if OFcurrent < OFgbest then
11: OFgbest ← OFcurrent;
12: xc ← xnew;
13: xbest ← xc;
14: count = 0;
15: if e < Ex count then
16: Put the solution into ϑ;
17: e = e+ 1;
18: else
19: Use this solution xnew to replace the worst one

in ϑ;
20: end if
21: else
22: count = count+ 1;
23: end if
24: gen = gen+ 1;
25: end while

End
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seen in Lines 7-8, jDE is used to adjust parameters F and F CR, then,
the three-stage adaptive collaboration strategy (TSAC()) is used to
obtain collaborative solutions based on the adjusted parameters F′ and
F CR′. As shown in Lines 10-24, elite selection and retention will
be executed. If the current solution is better than the global optimal
solution, the current solution will replace it, and ϑ will be updated.
If the current solution is inferior to the global optimal solution, no
operation will be taken, but the value of count 1 will be increased
by 1.

Algorithm 2 jDE
Input: F, F CR
Output: F′, F CR′

Begin:

1: F′ =

{
Flower + rand1 · Fupper, if rand2 < τ1
F, otherwise

;

2: F CR′ =

{
rand3, if rand4 < τ2
F CR, otherwise

;

End

B. Self-adaptive Adjustment Strategy
The self-adaptive adjustment strategy removes the need for param-

eter adjustment and usually shows good performance for different
types of problems. As a useful self-adaptive adjustment strategy,
jDE was proposed in [16] and successfully applied in [12]. Results
demonstrate that adjusting parameters is conducive to find promising
solutions. Therefore, this paper uses jDE as the parameter-tuning
method. In each generation, the calculation of F and F CR is shown
in Algorithm 2.

In the jDE strategy, randj , j ∈ {1, 2, 3, 4} are generated
uniformly at random in the range [0,1]. τ1 and τ2 are probability
factors. Flower and Fupper represent the low and upper boundary vectors
of F, respectively. In this paper, the same parameter settings as in
[16] are used, i.e., τ1 = τ2 = 0.1. All values in Flower, Fupper are set
to 0.1 and 0.9, respectively.

C. Three-stage Adaptive Collaboration Strategy
In the ERM problem under uncertainty, each variable value in the

solution directly affects the final profit. Therefore, how to perturb
these variables is important. The SADEA is designed based on DE
strategies, which are used to perturb the current solution. The quality
of the collaborative solutions, as part of the co-evolution, will have a
large impact on the subsequent evolutions. However, in many existing
EAs, the perturbation of the solution is not satisfactory. As a result,
the collaboration to the current solution may not achieve the desired
effect. Therefore, in this paper, we use a single-individual mechanism,
which has strong local search ability (demonstrated in [43], [44]), and
combine it with DE strategies to improve the effect of SADEA on
the perturbation of variable values.

Algorithm 3 gives details of the three-stage adaptive collaboration
strategy. Note that in the algorithm, xc, xr1, xr2, and xr3 denote
the current and three other collaborative solutions, respectively;
minbound and maxbound are boundaries composed of the minimum
and maximum values of all variables. Three different DE strategies
are designed to perturb the current solution to generate a new solution.
The details of the DE strategies are given in Equations (8)-(10).

DE/target-to-minimum boundary best strategy:

xnew = F3 (xr1 + xr3 − 2xr2) + minbound · (1− F1) (8)

DE/target-to-perturbed best/1:

xnew = F1 (xbest (F2 + rand (D))− xc)+

xc + F3 (xr1 − xr2) (9)

DE/target-to-perturbed best/2:

xnew = F1 (xbest (F2 + rand (D))− xc)+

xc + F3 (xr1 + xr3 − 2xr2) (10)

As shown in above equations, DE strategies generate a new
solution xnew by perturbing xr1, xr2 and xr3. F1, F2, and F3 are
three factors obtained from the jDE strategy, which are included in F
and take values in the range [0,1]; xnew is the new solution. rand (D)
represents a D-dimensional random vector whose data is all in the
range [0,1]; xbest and F are involved in the perturbation of variables
in the solution xc; As shown in Algorithm 3, the related counting
parameters count 1 and count 2 are suggested to set to 6 and 7,
respectively (see the experiment in Section VI). In addition, R is a
pre-set fixed value in [0,1].

Algorithm 3 Three-stage adaptive collaboration strategy
Input: F′, F CR′, the size of the historical archive ϑ,
the current solution xc, the best solution xbest, count
Output: xnew
Begin:
F = F′, F CR = F CR′;
/*boundary randomization stage*/

1: if count < count 1 then
2: Randomly generate collaborative solutions xr1, xr2,

and xr3.
3: if rand() ⩽ R then
4: Generate xnew using Eq.(9).
5: else
6: Generate xnew using Eq.(10).
7: end if

/*knowledge-assisted collaboration stage*/
8: else if count 1 ⩽ count < 11 then
9: Permutate randomly the solutions in ϑ, and assign the

first three solutions to xr1, xr2, and xr3, respectively. If
the size of ϑ is less than 3, then xr3 = 0.

10: if count ⩾ count 2 then
11: Generate xnew using Eq.(8).
12: else
13: if rand() ⩽ R then
14: Generate xnew using Eq.(9).
15: else
16: Generate xnew using Eq.(10).
17: end if
18: end if

/*range restructuration stage*/
19: else
20: Calculate the difference between maxbound and

minbound, the range is obtained, and then xri =
(range/2 · (i− 1)) + minbound, i = 1, 2, 3.

21: Generate xnew using Eq.(8).
22: end if

/*Crossover*/
23: v = rand (D) < F CR;
24: Generate v′ according to the v;
25: xnew = v′ · xc + v · xnew;
26: xnew ← BoundaryControl (xnew);

End

Fig. 4 shows the DE strategies used in different stages with
different colors. In the boundary randomization stage of SADEA
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Fig. 4. Illustration of three-stage adaptive collaboration strategy

(Algorithm 3, Lines 2-7), first, three random solutions are generated
randomly. Then, they are used by DE/target-to-perturbed best/1 and 2
strategies to perturb the current solution (red rectangular area). When
several invalid evolutions occur in the boundary randomization stage,
it moves to the next stage. In the knowledge-assisted collaboration
stage (Algorithm 3, Lines 9-18), successfully updated solutions from
recent generations are stored into ϑ. Then, DE/target-to-perturbed
best/1 and 2 and DE/target-to-minimum boundary best strategies use
xr1, xr2, and xr3 to further enhance the local search of SADEA, and
find promising solutions in the neighborhood of the current solution
(blue rectangular area). The purpose of this design is to maintain
a certain balance between global search and local search abilities,
and not to completely improve the performance of one side at the
expense of the other. In the range restructuration stage (Algorithm 3,
Lines 20-21), DE/target-to-minimum boundary best is used to reduce
the number of expensive calculations and the number of quality
evaluations (green rectangular area). In the Crossover (Algorithm 3,
Lines 23-25), the operation of generating random solutions is inspired
by [12], [45]. v and v′ are vectors composed of 0 and 1, and the pair
of vectors are reciprocal. If the value of certain variable in v is 1,
the value of the corresponding variable in v′ is 0, and vice versa.

D. Boundary Control Strategy
Ensuring the legality and correctness of the obtained solution is

an extremely important aspect. In this paper, after the perturbation of
DE strategies, variables in the solution are changed. However, some
values may exceed the minimum or maximum bounds during the
evolution. Obviously, this is not in accordance with the constraints
of the ERM. In this case, it is necessary to use the boundary control
strategy (Algorithm 3, Line 26) to contain the out-of-bounds variables
within a reasonable range. This is a simple and effective strategy,
which is also used in HyDE [12]. If variable values are greater
than the maximum boundary values, maximum boundary values are
assigned to these variables. If the variable values are less than the
minimum boundary values, minimum boundary values are used to
replace these values.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the effectiveness of SADEA is to be verified

through the following experiments: parameter sensitivity study of
SADEA, performance validation of the proposed strategies, and
comparison with the state-of-the-art algorithms. In these experiments,
all algorithms are coded in Matlab 2020 and performed on a 2.60
GHz Pentium processor, Intel Core i7 under the Windows 11 oper-
ating system. The line and violin charts are drawn by Origin; the
convergence curve is drawn by Matlab, and other statistical charts
are plotted using Excel. The details can be found in the following
subsections.

A. Design of the Experiments
In our experiment, SADEA, along with its variants and

peer algorithms, is executed with 20 independent runs. In each

run, 15 different scenarios are integrated into a problem black
box (the requirements for testing can be found on the web-
site: http://www.gecad.isep.ipp.pt/ERM-competitions/2023-2/). When
conducting experiments with peer algorithms, we choose two termi-
nation conditions, i.e., G = 3,000 and G = 5,000. The reason is to
check the stability and robustness of the algorithms. All parameters
and strategies are the same as those used in the original paper or
competition. In addition, the RI is used as the performance metric. It
is obtained by calculating the average value of N independent runs. A
smaller RI value indicates a better algorithm. The calculation formula
of RI is shown below:

RI =
1

N
·

N∑
i=1

OFi (11)

where N is the number of executed runs, and N = 20. OFi denotes
the value of the OF obtained in the ith run.

B. Sensitivity Study of Parameters
This subsection will conduct a sensitivity study on different

parameters:
• F, which affects collaborative solutions and evolutionary trends.
• F CR, which controls the degree of crossover.
• Ex count, which indicates the size of ϑ.
• count 1, which selects the execution stage in the three-stage

adaptive collaboration strategy.
• count 2, which determines the execution of DE/target-to-

minimum boundary best.
• The random factor R, which helps to choose the DE/target-to-

perturbed best/1 or 2.
Fig. 5 shows the variation trend of each parameter. Based on the

results, we ultimately choose: F = 0.4 (meaning that F1, F2, and F3

are set to 0.4), F CR = 0.5, R = 0.4, Ex count = 2, count 1 =
6, and count 2 = 7. As shown in Fig. 5, too large or too small F
and R will lead to the degradation of the algorithm’s performance.
The OF value gradually increases with respect to Ex count. This
indicates that there is no need for too many historical solutions. The
reason may be that storing too many solutions might lead to the wrong
evolutionary direction of the current solution, thereby hampering the
performance of the strategy. For other parameters, F CR, count 1,
and count 2, the variation of OF values is irregular. However, in
terms of the variation, the settings of these parameters also affect the
performance of SADEA.

C. The effectiveness of the proposed strategies
To investigate the impact of the proposed strategies, ablation

experiments are conducted in this section. We use the following
abbreviations to distinguish between variants of SADEA: V-bound
represents that there is no boundary randomization stage (′V ′ means
′variant′, ′-′ means ′remove′). V-Histor and V-Re indicate the absence
of knowledge-assisted collaboration and range restructuration stages,
respectively. V-DE1, V-DE2, and V-DE3 mean that the designed
DE strategies (DE/target-to-minimum boundary best, DE/target-to-
disturbed best/1 and 2) are not used, respectively. SADEA contains
all the strategies. The results are given in Table II and Fig. 6. Note
that, in Table II, bold font means that the corresponding algorithm
obtains the best OF or RI values among all the algorithms.

As shown in Table II, SADEA obtains 10 out of 20 best values,
larger than the numbers of the best OFs obtained by V-bound (0/20),
V-Histor (4/20), V-Re (3/20), V-DE1 (1/20), V-DE2 (1/20), and V-
DE3 (2/20). Moreover, SADEA achieves the smallest RI value. The
results imply that the proposed strategies are effective in improving
the performance of SADEA. Fig. 6 gives a violin chart drawn based
on the numeric results in Table II. In addition to showing the statistics,
the advantage of using a violin is that it clearly illustrates the overall
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TABLE II
PERFORMANCE COMPARISONS (REGARDING OF AND RI) BETWEEN THE VARIANTS WHERE ONE OF THE PROPOSED STRATEGIES IS REMOVED

Row V-Bound V-His V-Re V-DE1 V-DE2 V-DE3 SADEA

Run 1 95865 40427 41604 44884 46134 41440 41509
Run 2 82323 42446 68288 45190 45829 40033 40648
Run 3 100560 45892 41541 42049 48037 45362 42604
Run 4 94768 42439 62568 43743 61084 40024 39594
Run 5 97227 40680 41236 48341 61473 40092 40499
Run 6 132880 40814 41021 45859 42649 42883 48874
Run 7 109590 41867 40777 40937 41953 43784 39992
Run 8 71319 41922 42389 42999 43176 41606 40817
Run 9 101830 47500 41309 43775 42688 43530 40397
Run 10 91169 41932 48536 43560 41202 48916 40843
Run 11 124160 40579 44964 41584 77525 41566 40871
Run 12 103790 42401 43293 45196 50325 42313 40755
Run 13 112420 42609 41250 42778 61731 50030 43279
Run 14 92270 41925 45893 46448 44478 42334 40706
Run 15 121320 39956 41614 42187 48458 40489 39814
Run 16 111640 42781 54542 45930 41653 41942 41653
Run 17 60621 51841 41635 40983 51892 42433 42002
Run 18 78216 41565 40615 43851 40507 52277 40308
Run 19 113530 41094 41454 43819 61680 43547 41307
Run 20 92634 40773 40407 42988 44428 42117 48459

RI 99407 42572 45247 43855 49845 43336 41747

Fig. 5. The trend of OF with respect to different parameters

distribution of OFs. In Fig. 6, the black bar in the center of the violin
indicates the interquartile range, and the white dots denote the median
OF values. It shows that the black bars and white dots in SADEA’s
violin are the lowest amongst all the variants, indicating that SADEA
outperforms all the variants. From the size of violins, it can be
inferred that the boundary randomization has the greatest impact on
the algorithm. Indeed, after removing this strategy, the corresponding

Fig. 6. Violin chart for comparison of different variants

variant has the worst OF values. In addition, range restructuration and
DE/target-to-disturbed best/2 have a large impact on the performance
of SADEA. After removing these two strategies, the search ability
of SADEA becomes poor, resulting in unstable OF values. Thus, it
is necessary to use strategies with strong perturbation ability, range
restructuration and DE/target-to-perturbed best/2 precisely to meet
this requirement. For other strategies, they have a relatively small
impact on SADEA. As can be seen from the Table II and Fig. 6,
if these strategies are removed, the search performance of SADEA
decreases to a certain degree.

D. The Performance Comparison of All Algorithms
This subsection compares SADEA with the state-of-the-art algo-

rithms for solving ERM problems: HyDE [12], CUMDANCauchy,
CCSTG, Presto, HC2RCEDUMDA, and ReSaDE, which participated
in the 2020, 2021, and 2022 competitions on evolutionary computa-
tion in the energy domain: smart grid scheduling applications. Among
them, CUMDANCauchy, CCSTG, and ReSaDE won the first place
in 2020, 2021, and 2022 competitions, respectively. The proposed
SADEA adopts the parameters tuned in Subsection VI.B, while other
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Fig. 7. Ranking index for SADEA and peer algorithms when G = 3,000

algorithms use the parameters suggested by their developers. Tables
III and IV list the OF values obtained by all algorithms in 20
independent runs. Like in Table II, the best OF and RI values are
highlighted in bold. As shown in Tables III and IV, SADEA achieves
the best results in all the runs, showing clearly its superiority over
the peer algorithms.

To demonstrate the differences between these algorithms, we
plotted the RI values, min/max OF values, and accumulated OF
values in Figs. 7, 8, and 9 (G = 3,000) and Figs. 10, 11, and 12
(G = 5,000). The RI values (Figs. 7 and 10) are drawn in ascending
order according to Tables III and IV. Each color rectangle indicates
an algorithm. These plots provide an intuitional comparison of the
overall performance of the algorithms. From these plots, it can be seen
that SADEA has the best performance. The min/max values, as shown
in Figs. 8 and 11, are drawn based on the minimum and maximum
values in Tables III and IV. These two graphs reflect the fluctuation
of OF values in all runs. It can be seen that although SADEA
has the largest fluctuation, it still obtains smaller min/max values
than the peer algorithms. The max value of the SADEA is smaller
than the min value of the second-best algorithm HC2RCEDUMDA.
In addition, Figs. 9 and 12 give the accumulated OF values for
SADEA and peer algorithms. It can be seen from these figures,
SADEA achieves the minimum OF values and saves a significant
amount of costs. Comparing Figs. 13 and 14, we can find that
the solutions obtained by SADEA get more centralized when G is
increased from 3,000 to 5,000, while solutions of other algorithms
have small changes. It indicates that SADEA can continuously evolve,
while other algorithms may fall into local optimum. From the overall
perspective of the box plots, the OF values of SADEA are lower than
other algorithms, further demonstrating the effectiveness of SADEA.

The reason for the good performance of SADEA may be that
boundary randomization and range restructuration effectively en-
hance the algorithm’s global search ability. knowledge-assisted col-
laboration saves historical solutions and uses them to explore promis-
ing solutions in neighborhoods. This strategy aims at improving
the diversity of solutions while stabilizing the local search ability.
However, SADEA focuses its attention on a solution, which inevitably
leads to more ‘precise’ evolution of the solution. It will lead to
an issue: if the perturbation ability of SADEA is not strong, it
is likely to fall into the local optimum. Therefore, it is necessary
to design strategies with strong perturbation to improve the global
search ability of SADEA, helping the solution jump out of the
local optimum. The proposed DE strategies, combined with the
three-stage adaptive collaboration strategy, achieve the desired goal.
They overcome the shortcomings of traditional strategies in local
search abilities. Furthermore, as demonstrated in Section VI-C, the
proposed boundary randomization greatly improves the search ability
of SADEA.

E. Statistical Validation and Convergence Curves
In this subsection, to check whether there exist significant differ-

ences between SADEA and peer algorithms, we performed statistical

Fig. 8. minOF/maxOF values for SADEA and peer algorithms when G =
3,000

Fig. 9. Accumulated OF values for SADEA and peer algorithms when G =
3,000

Fig. 10. Ranking index for SADEA and peer algorithms when G = 5,000

Fig. 11. minOF/maxOF values for SADEA and peer algorithms when G =
5,000
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TABLE III
PERFORMANCE COMPARISONS (REGARDING OF AND RI) BETWEEN THE PEER ALGORITHMS WHEN G = 3,000

Row SADEA HC2RCEDUMDA ReSaDE HyDE CUMDANCauchy Presto CCSTG

Run 1 47771 72517 88159 101260 156100 178850 182710
Run 2 41648 66596 82663 94049 154800 178890 180750
Run 3 44239 69077 78367 97599 157740 178880 180770
Run 4 48659 66590 87895 87998 157680 178900 180830
Run 5 42024 65801 79883 98952 149990 178880 182090
Run 6 42190 74884 81738 99533 159350 178880 180630
Run 7 44115 68452 85055 91380 160650 178910 181270
Run 8 44561 67257 79195 94551 160690 178930 182290
Run 9 42541 70743 81151 91445 157740 178920 180900

Run 10 65734 68911 83439 98171 145450 178890 182140
Run 11 48271 68420 80783 87865 157790 178910 181270
Run 12 43324 66628 84231 102680 157520 178890 180530
Run 13 42568 73408 81357 98085 156100 178870 181350
Run 14 42446 65954 78773 90092 155070 178850 181190
Run 15 42059 67907 76726 93571 160720 178900 181500
Run 16 51161 73224 86613 84695 160170 178910 182090
Run 17 42817 69812 80934 84690 158380 178930 181400
Run 18 48806 67911 80608 86338 159340 178860 180870
Run 19 51921 70281 86703 92194 157190 178960 181910
Run 20 56333 67198 88030 100880 159660 178910 182350

RI 46659 69079 82615 93801 157110 178900 181440

TABLE IV
PERFORMANCE COMPARISONS (REGARDING OF AND RI) BETWEEN THE PEER ALGORITHMS WHEN G = 5,000

Row SADEA HC2RCEDUMDA ReSaDE HyDE CUMDANCauchy Presto CCSTG

Run 1 41509 56722 81563 88676 152430 178760 182710
Run 2 40648 52413 85619 68679 154810 178750 180750
Run 3 42604 57521 79784 90745 152850 178750 180770
Run 4 39594 49503 82439 78569 153180 178760 180830
Run 5 40499 52351 83220 87263 154990 178740 182090
Run 6 48874 59645 80071 85397 153940 178730 180630
Run 7 39992 51477 74485 87365 155330 178750 181270
Run 8 40817 52670 83258 91225 152840 178730 182290
Run 9 40397 56896 79594 89380 153110 178760 180900
Run 10 40843 53481 80655 89126 151420 178730 182140
Run 11 40871 52927 84101 79512 156020 178720 181270
Run 12 40755 55993 80059 84183 153710 178770 180530
Run 13 43279 55064 68860 91198 155930 178770 181340
Run 14 40706 51754 80087 78894 155750 178740 181190
Run 15 39814 53854 76660 79179 143770 178720 181500
Run 16 41653 54845 80593 86023 153670 178770 182090
Run 17 42002 52120 84121 83458 148390 178790 181400
Run 18 40308 54500 85601 80524 153630 178730 180870
Run 19 41307 55376 85037 91209 155200 178730 181910
Run 20 48459 52775 82475 84846 148890 178760 182350

RI 41747 54094 80914 84773 152990 178750 181440

Fig. 12. Accumulated OF values for SADEA and peer algorithms when G
= 5,000

Fig. 13. Box plots for SADEA and the peer algorithms when G = 3,000
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Fig. 14. Box plots for SADEA and peer algorithms when G = 5,000

tests with the Wilcoxon test. Tables V and VI list the Wilcoxon
test when G = 3000 and 5000, respectively. R+ represents the sum
of the OF values that are higher than SADEA compared to peer
algorithms. R- represents the sum of the OF values that are less
in SADEA compared to peer algorithms. The p-value represents
the degree of significant difference between the two algorithms.
If p-value<0.05, the hypothesis is rejected, indicating a significant
difference between SADEA and peer algorithms. Conversely, there
is no significant difference. According to the results in Tables V and
VI, all p-values<0.05, thus the hypotheses are rejected. All R- values
obtained are very large, while R+ values are 0, this shows that the
proposed SADEA algorithm performs significantly better than the
other algorithms. To summarize, the results indicate that there are
significant differences between SADEA and peer algorithms.

TABLE V
RESULTS OF THE WILCOXON TEST FOR PAIRWISE COMPARISONS

BETWEEN SADEA AND EACH PEER ALGORITHM (WHEN G = 3,000)

Wilcoxon test R+ R- p-value Hypothesis

SADEA vs HC2RCEDUMDA 0 448383 1.15E-17 Reject
SADEA vs ReSaDE 0 719115 6.91E-24 Reject
SADEA vs HYDE 0 942840 2.06E-25 Reject

SADEA vs CUMDANCauchy 0 2208942 1.3E-41 Reject
SADEA vs Presto 0 2644732 3.3E-47 Reject

SADEA vs CCSTG 0 2695652 2E-47 Reject

TABLE VI
RESULTS OF THE WILCOXON TEST FOR PAIRWISE COMPARISONS

BETWEEN SADEA AND EACH PEER ALGORITHM (WHEN G = 5,000)

Wilcoxon test R+ R- p-value Hypothesis

SADEA vs HC2RCEDUMDA 0 246956 3.32E-18 Reject
SADEA vs ReSaDE 0 783351 2.41E-31 Reject
SADEA vs HYDE 0 860520 2.98E-28 Reject

SADEA vs CUMDANCauchy 0 2224929 1.61E-51 Reject
SADEA vs Presto 0 2740029 3.48E-62 Reject

SADEA vs CCSTG 0 2793899 5.76E-62 Reject

Subsequently, to check the convergence of each algorithm, we
select 12 runs and then draw their curves to verify the convergence
performance. When G = 3,000, we randomly chose the run numbers:
2, 5, 9, 12, 15, and 17. When G = 5,000, we randomly chose the
run numbers: 1, 4, 7, 11, 14, and 18. As shown in Figs. 15 and
16, the second best algorithm, HC2RCEDUMDA, falls into a local
optimum in later evolutions. Other peer algorithms, such as ReSaDE
and HyDE, are not as strong as SADEA, though they do not fall
into local optimum in most cases. CUMDANCauchy is often trapped
in local optimum, and occasionally jumps out of this state. However,
from the convergence trend, the overall performance of this algorithm

is not strong. Presto and CCSTG are trapped in a local optimum
from the beginning of their execution and are unable to jump out
of it. Compared with the above algorithms, SADEA can converge
to a steady and better OF value more quickly. Overall, it exhibits a
continuous evolution, albeit with a slower speed in later stages. The
above convergence curves further confirm that SADEA outperforms
other peer algorithms in improving the convergence. In summary, the
proposed algorithm is effective for solving the ERM problem under
uncertainty.

VII. CONCLUSION AND FUTURE WORK
In this paper, a self-adaptive collaborative differential evolution

algorithm, named SADEA, is proposed to solve the ERM problem
under uncertainty. In SADEA, a three-stage adaptive collaboration
strategy is designed to generate different collaborative solutions to
help the evolution of the current solution. In boundary random-
ization, collaborative solutions are generated to perturb the current
solution. In the knowledge-assisted collaboration, the collaborative
solutions are generated using historical archive, whose purpose is
to help improve the global and local search abilities of SADEA. In
addition, three different DE strategies are proposed to reduce the
costs of aggregators in the ERM problem. The generated superior
solutions directly participate in the next collaboration after boundary
control and elite selection. In the experiments, sensitivity study and
analysis of parameters are conducted. Then, the effectiveness of all
proposed strategies is verified. Next, to verify the stability of the
algorithm, SADEA is compared with six peer algorithms. The results
demonstrate that SADEA outperforms peer algorithms in terms of
solutions’ diversity and convergence.

We found that single-individual mechanism is useful for solving
the continuous optimization problem, especially the ERM problem
addressed in this paper. In addition, based on the single-individual
mechanism, the performance of the algorithm can be further enhanced
by using strategies that can improve the global search ability. Last but
not the least, to maintain a balance between global and local search
abilities, it is effective to use a multi-stage adaptive collaboration
framework.

In the future, we will consider further optimizing the structure
of SADEA, and will reduce the number of parameters with fixed
settings. Moreover, there is value in improving the local and global
search abilities of the algorithm, particularly in the late evolution
stage. Also, it is interesting to incorporate micro search [46], neural
networks [47], or reinforcement learning [48] into the EA algorithms.
Finally, it is possible to make use of the advantages of other EA
algorithms, e.g., Discrete Bee Colony Optimization Algorithms [49]
and Meme algorithms [50].
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Fig. 15. Convergence curves of SADEA and peer algorithms when G = 3,000
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Fig. 16. Convergence curves of SADEA and peer algorithms when G = 5,000
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