
Optimizing Energy-Efficient Flexible Job Shop
Scheduling with Transportation Constraints: A

Q-Learning Enhanced Quality-Diversity Algorithm
Haoxiang Qin

School of Software Engineering
South China University of Technology

Guangzhou, China
987352978@qq.com

Yuyan Han
School of Computer Science

Liaocheng University
Liaocheng, China

hanyuyan@lcu-cs.com

Yi Xiang∗
School of Software Engineering

South China University of Technology
Guangzhou, China

∗Corresponding author. xiangyi@scut.edu.cn

Xueming Yan
School of Information Science and Technology

Guangdong University of Foreign Studies
Guangzhou, China

yanxm@gdufs.edu.cn

Abstract—The Flexible Job Shop Scheduling Problem (FJSP),
particularly one with transportation constraints, is prevalent in
the intelligent manufacturing field. Leveraging the intricacies of
these transportation constraints is recognized for its potential to
enhance problem-solving efficacy. Despite this, there has been a
dearth of research focusing on this approach. This paper posits
that integrating transportation conditions into local search oper-
ators can significantly bolster the ability to solve such problems.
To make well-informed decisions among local search operators,
we have implemented a reinforcement learning technique known
as Q-learning. Furthermore, we design a Quality-Diversity (QD)
algorithm aimed at preserving solution diversity within a tailored
feature space. This space is designed in accordance with the
unique attributes of transportation constraints. The empirical
results from testing on 20 instances indicate that our proposed
algorithm shows great promise, achieving an average 6% re-
duction in the optimization objective when compared to existing
state-of-the-art algorithms.

Index Terms—Flexible job shop scheduling with transportation
constraints, energy-efficient, Q-learning, Quality-Diversity algo-
rithm

I. INTRODUCTION

The Flexible Job Shop Scheduling Problem (FJSP) is a
significant challenge in the field of combinatorial optimization,
being both NP-hard and widely prevalent in the intelligent
manufacturing [1], [2]. Characterized by a diverse range of op-
erations for each job, FJSP offers the flexibility to assign these
operations to any of the available machines for processing [3].
To optimize job processing, companies often utilize an array
of equipment, including cranes, conveyors, and Automated
Guided Vehicles (AGVs), to facilitate the transportation of

This work was supported by the Guangdong Basic and Applied Basic Re-
search Foundation (2024A1515030022); National Natural Science Foundation
of China (61906069).

jobs [4]. Integrating transportation constraints into the FJSP
(thereafter referred to as FJSP-T) is deemed crucial as it
substantially augments the applicability and potency of the
developed solutions, thereby warranting in-depth investigation.

The FJSP-T is a multifaceted challenge that necessitates
the simultaneous consideration of job sequencing, machine
allocation, and AGV transportation. While mathematical meth-
ods theoretically ensure solution quality, they often struggle
to tackle large-scale instances of FJSP-T within reasonable
timeframes, a limitation stemming from the problem’s NP-hard
nature [5]. Evolutionary algorithms offer a heuristic approach
to address FJSP-T within the constraints of limited time [6].
Nonetheless, these algorithms might not fully capitalize on
the potential of local search operators, a deficiency that could
adversely impact their overall performance [7]. To bolster
the efficacy of evolutionary algorithms, Q-Learning can be
employed to inform strategic decisions within the algorithmic
process [8].

The Quality-Diversity (QD) algorithm is a significant
paradigm within evolutionary computation [9]. Distinct from
conventional methods, QD algorithms concentrate on uncover-
ing a diverse array of solutions that excel across a spectrum of
performance metrics within a defined feature space—a space
constituted by a collection of features [10]. Indeed, the QD
algorithm has garnered success across a myriad of domains,
such as robotics [11], gaming [12]. However, to our best
knowledge, no studies have yet delved into harnessing the
QD framework to tackle the FJSP-T. This gap presents an
innovative avenue for approaching FJSP-T, marking it as a
compelling and significant area of research.

In recent years, Reinforcement Learning (RL) has been
successfully implemented in various shop scheduling scenarios
[13], [14]. In [13], a parameter selection mechanism grounded

2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS)

979-8-3503-7784-2/24/$31.00 ©2024 IEEE

in RL was introduced to facilitate sound decision-making,
which subsequently enhanced the diversity of the solutions.
Another work incorporated a neighborhood structure to delve
into the solution space during evolution [14]. Throughout
the search process, Q-Learning was employed to choose the
appropriate neighborhood structure, effectively bolstering the
algorithm’s local search abilities. These studies collectively
illustrate that evolutionary algorithms can effectively strike a
balance between exploration and exploitation by integrating
RL techniques [14]. Indeed, the integration of current RL
methods into evolutionary algorithms has proven to be im-
mensely beneficial for decision-making processes.

This paper proposes an improved algorithm that combines
the QD algorithm with Q-Learning, referred to as QQD.

The main contributions are given as follows:
• In this paper, a new decoding method of the energy-

efficient FJSP-T is proposed.
• The QD algorithm considers the diversity of solutions

within the feature space, which aids in preventing the al-
gorithm from getting trapped in local optima. Q-Learning
method intelligently choose appropriate local search op-
erators, thereby significantly enhancing the exploitation
of the QD algorithm.

• Q-Learning smartly utilizes these local search operators
through strategic selection, particularly those tailored
to meet transportation conditions. This approach guides
the algorithm to evolve in a more promising direction,
steering clear of futile search spaces.

II. THE ENCODING AND DECODING OF THE FJSP-T

It should be mentioned that the contribution of this paper
is not in the mathematic modeling, but in the decoding rules.
For ease of description, the parameters and variables can be
seen in appendix.

The objective of FJSP-T are shown as follows:

Minimize obj = TP + TI + TT (1)

TP =
∑
i∈I

∑
j∈Ji

∑
k∈Mi,j

TPi,j,k (2)

TI =
∑
k∈M

TIk (3)

TT =
∑
i∈I

∑
j∈Ji

∑
k,k′∈Mi,j

TTi,j,k,k′ (4)

TPi,j,k = Ti,j,k · PPk ∀i ∈ I, j ∈ Ji, k ∈ Mi,j (5)

TIk = (Ci,j−1 − Pk + TRi,j,k,k′) · PIk

∀i ∈ I, j ∈ Ji, k, k
′ ∈ Mi,j

(6)

TTi,j,k,k′ = TRi,j,k,k′ · PTi,j,k,k′ ∀i ∈ I, j ∈ Ji, k, k
′ ∈Mi,j

(7)
Additionally, the constraints followed by this problem are:
(1) Jobs cannot be interrupted once they start processing.
(2) Each operation can only be processed by one machine,

and each machine can only process one operation at a time.

(3) All machines are available at moment 0.
(4) The processing time of a job is greater than or equal to

0.
(5) Conditions such as machine setup time are included in

the processing time.
This section details the encoding and decoding processes for

the Flexible Job Shop Scheduling Problem with Transporta-
tion constraints (FJSP-T). As depicted in Fig. 1, an integer
encoding schema is utilized, which is sourced from [15]. This
schema encompasses two primary vectors: 1) the Operation
Sequence OS; and 2) the Machine Selection MS. Both the OS
and MS vectors are of a length equivalent to the total count
of operations, denoted as nmax.

Fig. 1. The encoding vectors of one solution.

As outlined in Algorithm 1, a decoding procedure, denoted
as Decoding(x), has been crafted to assess a given solution.
This procedure yields two principal outputs: objx and bx.
Specifically, objx represents the objective value associated
with the solution x, whereas bx signifies the coordinates of x
within the feature space. These coordinates are ascertained by
two distinct features: num idle and num trans. The former
corresponds to the total number of machine idle instances,
and the latter denotes the total number of transportation
occurrences for all jobs.

Before delving into the specifics of the Decoding(x), it is
essential to present some critical formulas. The PUi,j variable
represents the availability time of machine Ui,j . If PUi,j is less
than Ci,j−1, it indicates that machine Ui,j is idle. Equation (8)
is utilized to determine PUi,j

:

PUi,j = Ci,j−1 + TRi,j,Ui,j−1,Ui,j + Ti,j,Ui,j (8)

If PUi,j
⩾ Ci,j−1, Ui,j is not in idle state. When j =

1, Equation (9) is used to calculate PUi,j
; otherwise, either

Equation (8) or (9) is adopted to calculate PUi,j (Lines 18-
24).

PUi,j = PUi,j + Ti,j,Ui,j (9)

As depicted in Algorithm 1, lines 4-5 identify the se-
lected machine for operation Oi,j from the MS vector.
Lines 7-13 outline the calculation for TPi,j,Ui,j

, TIUi,j
, and

TTi,j,Ui,j−1,Ui,j
, and count the number of num idle and

num trans when machine Ui,j is idle. Lines 15-32 describe
the calculation for TPi,j,Ui,j , TIUi,j , and TTi,j,Ui,j−1,Ui,j , and

Algorithm 1 Decoding (x)
Input: x
Output: The objective value objx of x and its corresponding
coordinates in feature space bx

1: x can be represented by a combination of OS and MS
2: num idle← 0, num trans← 0
3: for pos← 1 to nmax do
4: Oi,j ← OSpos

5: Find Ui,j from MS according to the position of Oi,j

6: if PUi,j < Ci,j−1 then
// Machine Ui,j is idle

7: num idle← num idle+ 1
8: Calculate the PUi,j using Eq.(8)
9: Ci,j ← PUi,j

10: if Ui,j−1 ! = Ui,j then
11: num trans← num trans+ 1
12: end if
13: Calculate TPi,j,Ui,j

, TIUi,j
, and TTi,j,Ui,j−1,Ui,j

using
Eqs.(5-7), respectively.

14: else
// Machine Ui,j is not idle

15: if j == 1 then
16: Calculate PUi,j using Eq.(9)
17: else
18: if PUi,j < Ci,j−1 + TRi,j,Ui,j−1,Ui,j then
19: Calculate TIUi,j using Eq.(6)
20: num idle← num idle+ 1
21: Calculate PUi,j using Eq.(8)
22: else
23: Calculate PUi,j using Eq.(9)
24: end if
25: if Ui,j−1 ! = Ui,j then
26: num trans← num trans+ 1
27: end if
28: Calculate TTi,j,Ui,j−1,Ui,j using Eq.(7)
29: end if
30: Ci,j ← PUi,j

31: Calculate TPi,j,Ui,j using Eq.(5)
32: end if
33: end for
34: Calculate TP, TI, and TT using Eqs.(2-4), respectively.
35: objx ← TP + TI + TT
36: bx ← (num idle, num trans)

return {objx, bx}

count the number of num idle and num trans when Ui,j is
not idle. In line 35, the total energy consumption, denoted as
objx, is calculated. Line 36 obtains the coordinates of two
features.

III. THE PROPOSED ALGORITHM

Algorithm 2 presents the framework for the QQD. The
input parameters encompass: the grid dimension N , batch
size batch, maximum evaluations Max Iter, learning rate α,
discount factor γ, and greedy factor ϵ. The algorithm’s output
yields a feature-performance grid consisting of P and X . P
represents the objective values, while X signifies the set of
solutions within the grid.

A. Framework of the QQD

Lines 3-4 list the initialization operations of the QQD. The
reward values are not involved in the computation of the

initialization phase. In lines 6-7, the Q-table is initialized with
a default value of 0. The state s1 has an initial value of 1,
which indicates the first solution. The value of the state in
the Q-table indicates the number of a solution. In Line 10,
a solution is randomly selected from the grid. Line 11 of
the algorithm utilizes the Q-Learning algorithm for strategic
decision-making. It describes the selection of action at through
Equation 10. In line 12, the value of ϵ is decremented. By
randomly selecting actions for trial and error, the Q-table
accumulates increasingly valuable information. Lines 13-14
execute a local search operator based on action at and yield
a new solution x′. This new solution is subsequently placed
into the grid for evaluation. Lines 15-19 update the subsequent
state st and the count of solutions. Line 20 revises the value
of Q(st, at) according to Equation 11. In Equation 11, the
learning rate α is gradually reduced as per Equation 12 (line
21).

Algorithm 2 Q-Learning based QD Algorithm
Input: N , batch, Max Iter, α, γ, ϵ
Output: feature-performance grid (P and X)

1: P ← ∅, X ← ∅
2: for i← 1 to batch do
3: x← random solution ()
4: Add to grid (P,X , x) // Algorithm 3
5: end for
6: iter ← 1, s1 ← 1
7: Initialize Q table
8: while iter ⩽ Max Iter do
9: for t← 1 to batch do

10: Randomly select one solution x from X
11: Select at using Eq.10
12: ε← ε · 0.999
13: x′← Execute LSS for x according to at

14: Add to grid (P,X , x′) // Algorithm 3
15: if t = batch then
16: st+1 ← 0
17: else
18: st+1 ← st + 1
19: end if
20: Update Q(st, at) using Eq.11
21: Update α using Eq.12
22: end for
23: end while

return feature-performance grid (P and X)

at =

{
argmax

a∈A
Q (st, a) , τ ⩾ ε

arandom , τ < ε
(10)

where at represents an action that determines the strategy to
be taken. Q (st, a) represents a particular Q value in Q table
for state st. In this paper, a state is defined as a solution, and t
represents the specific index of the solution. A denotes the set
of possible actions. We employ various local search operators
to represent these different actions. argmax

a∈A
Q (st, a) signifies

the selection of the action with the highest Q-value among all
actions in state st. τ is randomly sampled within the range
[0,1].

Q (st, at) = Q (st, at) + α ·
[
rt + γ · argmax

a∈A
Q (st+1, a)−Q (st, at)

]
(11)

where Q (st, at) indicates the Q-value associated with per-
forming action at in state st. γ is the the discount factor.
argmax

a∈A
Q (st+1, a) denotes the maximum Q-value for the

subsequent state st+1.

α = α− (α− 0.01) · iter/Max Iter (12)

where α represents the learning rate. iter denotes the current
iteration number. Max Iter signifies the total number of
iterations.

B. Evaluation function

The objective of Algorithm 3 is to calculate the value of
the objective function for the new solution and to update
the feature space grid. The feedback signal rt represents the
reward and is utilized to assess the impact of taking an action
in each state. Line 1 outlines the computation of bx and its
objective value objx. In Lines 3-5, if bx is empty, the new
solution x is directly placed into the cell, and the reward rt is
set to 1. If bx is not empty and x is superior to the existing
solution, the old solution is replaced, and rt is calculated as
Line 9; if not, x is rejected, and the reward rt is set to 0.

Algorithm 3 Add to Grid (P,X , x)

Input: P,X , x
Output: feature-performance grid (P and X)

1: {objx, bx} ← Decoding (x) // Algorithm 1
2: if P (bx) = ∅ then
3: P (bx)← objx
4: X (bx)← x
5: rt ← 1
6: else if P (bx) < objx then
7: P (bx)← objx
8: X (bx)← x
9: rt ← (P (bx)− objx)/P (bx)

10: else
11: rt ← 0
12: end if

return feature-performance grid (P and X)

C. Local Search Strategy

This subsection presents an overview of the six local search
operators within the Local Search Strategy (LSS), as outlined
in Line 13 of Algorithm 2.

LS1: See [16], identify the machine with the smallest load
Minload. Subsequently, iterate through all operations on the
other machines. If an operation can be processed on the
Minload machine, it is relocated to this machine.

LS2: Randomly select a job within the scheduling sequence
and identify the operation with the longest transportation time.
Then, alter the machine assignment for that operation to ensure
it differs from the original machine.

LS3: Identify all critical operations on the critical path.
Subsequently, it locates the operation with the longest trans-
portation time. Finally, it modifies the machine assignment for
that operation.

LS4: See [15], identify all critical operations. Randomly
select two distinct critical operations that are not part of the
same job sequence. Swap their positions within the schedule.

LS5: See [15], identify all critical operations and then alter
the machine assignments for one of the critical operations.

LS6: See [15], randomly select one critical operation and a
non-critical operation. Determine their current positions in the
schedule. Insert the non-critical operation ahead of the critical
operation.

IV. SIMULATION EXPERIMENT

A. Parameter settings

The experiments were conducted on a Windows 11 operat-
ing system, utilizing an Intel Core i7 processor at 2.10 GHz
with a frequency of 2.10 GHz and 16.0 GB of RAM.

Following the setup in [13], the number of machines was
set as m ∈ {5, 6, 7, 8} and the number of jobs as i ∈
{20, 30, 40, 50, 100}. In total, there are 20 distinct instance
combinations, and each instance was subjected to 20 inde-
pendent tests. The maximum number of evaluations for all
tests is defined as Max Iter = 20 · nmax ·m. For each job,
the processing time Ti,j,k of its operation varies within the
range [5, 20]. We refer to the test set in [17] to establish the
transportation time for all operations.

Refer to [7] for the use of the Relative Percentage Increment
(RPI) to assess the quality of the algorithm. It is defined as
follows:

RPIa = (ca − cbest) /cbest × 100% (13)

where ca represents the energy consumption obtained from
algorithm a, and cbest is the minimum energy consumption
observed across all algorithms. The lower the RPIa, the better
the performance of the algorithm.

B. Comparison experiment and analysis

We compared QQD with five state-of-the-art algorithms.
We selected the classical QD algorithm [18]. Additionally,
we included hybrid VNS-GA [16], IGSA [3], LRVMA [13],
and DQCE [15]. To ensure fairness, we implemented all
the comparison algorithms as they were originally described,
including their parameter settings. Table I presents the results
of these comparative algorithms. The evaluation metrics we
utilized are RPI, MEAN, and BEST. ’AVG’ indicates the
average value of each metric.

In addition, we also drew box plots, as shown in the Fig.
2, QQD got the best RPI value. The distribution of solutions
is stable and dense with no high outliers. By comparing with
the other five state-of-the-art algorithms, it can be seen that
the proposed QQD algorithm is the most effective in solving
FJSP-T.

TABLE I
RPI, MEAN AND BEST OBJECTIVE VALUES OF ALGORITHMS.

Instance
RPI MEAN BEST

QQD QD VNS-GA IGSA LRVMA DQCE QQD QD VNS-GA IGSA LRVMA DQCE QQD QD VNS-GA IGSA LRVMA DQCE

20J5M 0.04 0.21 0.14 0.16 0.18 0.18 4720.7 5494.2 5152.8 5273.7 5330.3 5340.1 4535 5412 4846 4854 5172 5152
20J6M 0.04 0.23 0.15 0.18 0.19 0.20 4639.1 5465.6 5123.4 5225.5 5269.3 5345.9 4445 5373 4774 4943 5007 4963
20J7M 0.04 0.27 0.18 0.17 0.22 0.24 4416.9 5370.3 5010.8 4970.0 5159.5 5247.5 4230 5278 4746 4619 5002 5103
20J8M 0.03 0.27 0.18 0.19 0.21 0.21 4367.4 5392.0 5027.1 5074.1 5150.9 5162.2 4257 5307 4714 4863 5036 4980
30J5M 0.04 0.19 0.12 0.13 0.15 0.16 7310.0 8389.2 7887.5 7972.6 8117.8 8178.3 7060 8255 7265 7589 7914 7821
30J6M 0.03 0.21 0.13 0.13 0.17 0.18 7113.3 8365.3 7784.2 7780.4 8092.8 8169.2 6896 8227 7244 7344 7874 7935
30J7M 0.03 0.22 0.14 0.14 0.18 0.19 6910.5 8156.5 7646.4 7644.3 7848.6 7955.6 6679 7985 7140 6893 7709 7685
30J8M 0.03 0.25 0.15 0.17 0.19 0.19 6649.1 8096.2 7400.0 7565.0 7713.2 7709.8 6455 7960 7031 7103 7509 7454
40J5M 0.04 0.17 0.08 0.13 0.12 0.14 9720.3 10946.4 10154.2 10608.2 10556.9 10687.6 9385 10842 9500 10062 10352 10480
40J6M 0.02 0.18 0.10 0.12 0.13 0.14 9428.5 10864.9 10150.6 10309.8 10436.9 10510.3 9199 10681 9601 10004 10242 9988
40J7M 0.05 0.21 0.12 0.17 0.15 0.17 9154.3 10624.9 9826.1 10203.4 10088.3 10233.8 8751 10314 9422 9535 9855 9881
40J8M 0.04 0.25 0.15 0.19 0.18 0.18 8893.1 10664.4 9793.3 10151.1 10056.3 10035.2 8520 10477 9172 9639 9937 9673
50J5M 0.04 0.16 0.10 0.14 0.14 0.14 12226.2 13624.0 12916.7 13352.3 13315.3 13371.9 11705 13421 12308 12966 13104 12941
50J6M 0.03 0.17 0.09 0.13 0.13 0.13 11953.1 13585.0 12627.7 13110.6 13117.5 13193.7 11635 13464 11889 12465 12922 12850
50J7M 0.04 0.20 0.11 0.14 0.15 0.15 11558.4 13309.4 12323.3 12729.0 12761.4 12799.8 11120 13013 11809 12047 12445 12481
50J8M 0.03 0.21 0.12 0.16 0.14 0.14 11172.5 13189.4 12192.0 12598.7 12417.9 12395.4 10863 12888 11558 12145 12288 11939

100J5M 0.02 0.10 0.05 0.07 0.08 0.09 25519.8 27528.1 26179.0 26795.0 26818.0 27069.0 24937 27199 25331 26042 26483 26467
100J6M 0.04 0.13 0.07 0.11 0.08 0.10 24784.7 27006.2 25491.9 26456.5 25932.6 26384.9 23914 26762 24524 25484 25576 25807
100J7M 0.03 0.15 0.07 0.12 0.08 0.11 23399.1 26135.5 24228.8 25464.3 24556.3 25154.8 22653 25528 23212 24582 24224 24716
100J8M 0.03 0.20 0.10 0.15 0.10 0.13 22452.7 25994.7 23763.8 24870.5 23845.9 24532.4 21699 25745 22387 23325 23605 23979

AVG 0.04 0.20 0.12 0.15 0.15 0.16 11319.5 12910.1 12034.0 12407.7 12329.3 12473.8 10947 12706.6 11423.7 11825.2 12112.8 12114.8

QQD QD VNS-GA IGSA LRVMA DQCE
0.00

0.05

0.10

0.15

0.20

0.25

0.30
 QQD VNS-GA LRVMA
 QD IGSA DQCE

RP
I

Fig. 2. The bov plot of all algorithms.

V. CONCLUSION

In this paper, we focus on the Flexible Job Shop Problem
with Transportation constraints, prioritizing energy consump-
tion as the optimization objective. We propose a Q-Learning
enhanced Quality-Diversity algorithm. This integration not
only ensures the diversity of solutions but also enhances the
local search performance of the algorithm. In our experiments,
comparisons with five state-of-the-art algorithms substantiate
the effectiveness of QQD. Future research may explore the
application of the QD framework in the domain of intelligent
manufacturing, as well as investigate the potential of integrat-
ing QD with advanced techniques such as neural networks.

ACKNOWLEDGMENT

This work was supported by the Guangdong Basic and
Applied Basic Research Foundation (2024A1515030022); Na-
tional Natural Science Foundation of China (61906069).

We are also grateful for Guangyue Young Scholar Inno-
vation Team of Liaocheng University under grant number
LCUGYTD2022-03.

REFERENCES

[1] K. Lei, P. Guo, Y. Wang, J. Zhang, X. Meng, and L. Qian, “Large-
scale dynamic scheduling for flexible job-shop with random arrivals of
new jobs by hierarchical reinforcement learning,” IEEE Transactions on
Industrial Informatics, vol. 20, no. 1, pp. 1007–1018, 2024.

[2] H. Wang, Y. Jiang, H. Wang, and H. Luo, “An online optimization
scheme of the dynamic flexible job shop scheduling problem for
intelligent manufacturing,” in 2022 4th International Conference on
Industrial Artificial Intelligence (IAI), 2022, pp. 1–6.

[3] J.-Q. Li, Y. Du, K.-Z. Gao, P.-Y. Duan, D.-W. Gong, Q.-K. Pan, and P. N.
Suganthan, “A hybrid iterated greedy algorithm for a crane transportation
flexible job shop problem,” IEEE Transactions on Automation Science
and Engineering, vol. 19, no. 3, pp. 2153–2170, 2022.

[4] M. Saidi-Mehrabad, S. Dehnavi-Arani, F. Evazabadian, and V. Mah-
moodian, “An ant colony algorithm (aca) for solving the new integrated
model of job shop scheduling and conflict-free routing of agvs,” Com-
puters & Industrial Engineering, vol. 86, pp. 2–13, 2015.

[5] J.-J. Wang and L. Wang, “A bi-population cooperative memetic algo-
rithm for distributed hybrid flow-shop scheduling,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 5, no. 6, pp.
947–961, 2021.

[6] K. Gao, F. Yang, M. Zhou, Q. Pan, and P. N. Suganthan, “Flexible
job-shop rescheduling for new job insertion by using discrete jaya
algorithm,” IEEE Transactions on Cybernetics, vol. 49, no. 5, pp. 1944–
1955, 2019.

[7] H. Qin, Y. Han, Q. Chen, L. Wang, Y. Wang, J. Li, and Y. Liu, “Energy-
efficient iterative greedy algorithm for the distributed hybrid flow shop
scheduling with blocking constraints,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 7, no. 5, pp. 1442–1457, 2023.

[8] H. Li, K. Gao, P.-Y. Duan, J.-Q. Li, and L. Zhang, “An improved
artificial bee colony algorithm with q-learning for solving permutation
flow-shop scheduling problems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 53, no. 5, pp. 2684–2693, 2023.

[9] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A
new frontier for evolutionary computation,” Frontiers in Robotics & Ai,
vol. 3, 2016.

[10] A. Cully and Y. Demiris, “Quality and diversity optimization: A unifying
modular framework,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 2, pp. 245–259, 2018.

[11] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, p. 503–507, May 2015.
[Online]. Available: http://dx.doi.org/10.1038/nature14422

[12] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore,” Nature, vol. 590, no. 7847, p. 580–586, Feb. 2021.
[Online]. Available: http://dx.doi.org/10.1038/s41586-020-03157-9

[13] R. Li, W. Gong, C. Lu, and L. Wang, “A learning-based memetic
algorithm for energy-efficient flexible job-shop scheduling with type-2
fuzzy processing time,” IEEE Transactions on Evolutionary Computa-
tion, vol. 27, no. 3, pp. 610–620, 2023.

[14] F. Zhao, Z. Wang, and L. Wang, “A reinforcement learning driven
artificial bee colony algorithm for distributed heterogeneous no-wait
flowshop scheduling problem with sequence-dependent setup times,”
IEEE Transactions on Automation Science and Engineering, vol. 20,
no. 4, pp. 2305–2320, 2023.

[15] R. Li, W. Gong, L. Wang, C. Lu, and C. Dong, “Co-evolution with
deep reinforcement learning for energy-aware distributed heterogeneous
flexible job shop scheduling,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, pp. 1–11, 2023.

[16] G. Zhang, L. Zhang, X. Song, Y. Wang, and C. Zhou, “A variable
neighborhood search based genetic algorithm for flexible job shop
scheduling problem,” Cluster Computing, pp. 1–12, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:4548038

[17] B. Ümit and U. Gündüz, “A time window approach to simultaneous
scheduling of machines and material handling system in an fms,”
Operations Research, vol. 43, no. 6, p. 1058–1070, 1995.

[18] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909., 2015.

APPENDIX

i: The index of job
j: The index of operation
k: The index of machine
n: The total number of jobs
wi: The number of operations of job i
nmax: The total number of operations of all jobs
m: The total number of machines
I: The set of jobs, I = {1, ...i, ...n}
Ji: The operation set of job i, Ji = {1, ...j, ...wi}
M : The set of machines, M = {1, ...k, ...m}
Oi,j : The operation j of job i
Mi,j : The set of selectable machines of Oi,j

Ti,j,k: Processing time of Oi,j on machine k
TRi,j,k,k′ : Transportation time of Oi,j from machine k to

k′

Ci,j : The completion time of Oi,j

Pk: The available time set of machine k
Ui,j : The machine that processes Oi,j

TP : Total processing EC
TI: Total machine idle EC
TT : Total transportation EC
TPi,j,k: Processing EC of operation Oi,j on machine k
TIk: machine idle EC on machine k
TTi,j,k,k′ : Transportation EC of operation Oi,j from ma-

chine k to k′

PPk: The power of machine k processing Oi,j per unit
time.
PIk: The power of machine k in idle state per unit time.
PTi,j,k,k′ : The power of transferring Oi,j from machine k

to k′ per unit time.

