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H I G H L I G H T S  

• Propose a novel PSO variant method based on orthogonal learning to balance exploration and exploitation. 
• Apply to a real-world non-linear optimization OPF problem. 
• Develop a wind energy conversion system model WOPF for wind integrated optimal power flow.  
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A B S T R A C T   

This study develops a novel variant of particle swarm optimization (PSO), which improves its balance of 
exploration and exploitation by modifying neighborhood topology, self-adaptive parameter strategies and deep 
search, namely differential evolutionary evolution PSO with orthogonal learning (OL), i.e., DEEPSO-OL in short. 
Evolutionary computing can explore the solution space efficiently because of its self-evolving attribute as iter-
ation continues. The OL enhances its exploitation by focusing on deeper search for promising solutions. It utilizes 
the concept of orthogonal experimental design (OED) which predicts the best combination of control variables 
without exhaustive evaluation of all possible combinations. In addition, to avoid premature convergence in a 
local optimum, a stochastic star topology for particles is proposed. Such topology ensures just enough 
communication among the best performing particles, while encouraging them to explore other spaces. The ef-
ficacy of the algorithm is evaluated through real-world scenarios such as optimal power flow (OPF) and wind 
integrated OPF, which are hard to solve with classical mathematical methods. The proposed algorithm is run on a 
modified IEEE 30-bus test system and compared to the state-of-the-art evolutionary computing algorithms for a 
variety of cost objective functions with high levels of non-linearity and non-convexity. The DEEPSO-OL dem-
onstrates its performance to generate more accurate feasible solutions and construct promising and efficient 
search method for real-world complex optimization problems.   

1. Introduction 

Particle swarm optimization (PSO) has been widely applied in 
continuous complex optimization domain over the past 25 years, where 
classical mathematical programming is no longer practical since highly 
non-convex and non-linear properties [1]. Even though PSO is relatively 
efficient, simple, and easy-to-implement, it still has some obvious 

drawbacks, such as lack of robustness, weak balance in exploration and 
exploitation causing premature convergence, weak scalability, diffi-
culties in tuning system parameters, etc. [2,3]. The well-known No Free 
Lunch Theorem has stated that no meta-heuristic algorithm can be su-
perior to additional algorithms for all optimization problems universally 
[4]. Thus, many PSO variants are developed to tackle different prob-
lems. Design of those variants can be directed by modifying 
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neighborhood topology, evolving system parameters, executing deep 
search, etc. Essentially, the objective is improving the balance between 
exploitation and exploration. Spanning from minor improvements to the 
integration of advanced innovative concepts, most variations have been 
developed manually, with developers experimenting with new designs 
based on their individual knowledge and expertise [3]. 

The existing PSO variants can be summarized into four aspects with 
each PSO variant falling into only one or two aspects [3]: 1) variants on 
system parameters, such as self-adaptive parameters; 2) variants on the 
particle’s search mechanism to guide some deep search; 3) variants 
focused on adding perturbation to position or velocity vectors to escape 
from local minimal; 4) variants on population topology and size. It 
should be noted that our proposed differential evolutionary evolution 
PSO with orthogonal learning (DEEPSO-OL) algorithm, aims to enhance 

the standard PSO in all four aspects. 
Aspect 1 focuses on designing control parameters for the system, such 

as time-varying or adaptive/self-adaptive inertia and acceleration co-
efficients. Time-varying parameters are defined as functions dependent 
on specific iterations during algorithm runs whereas adaptive and self- 
adaptive parameters are functions dependent on the information dur-
ing the running process to adjust their values. Because those control 
parameters influence the exploitation and exploration abilities of the 
algorithm heavily, there are numerous variations of parameter control 
strategies in the literature on PSO [5,6]. The weights in DEEPSO-OL 
undergo a mutation process where they evolve on a log distribution at 
each iteration. Such process improves the search behavior by balancing 
the exploration and exploitation because log distributions concentrate 
more values on the lower end and fewer on the higher end. In other 
words, more particles equipped with lower weights lead to a higher 
exploration rate while fewer particles with higher weights focus on 
exploiting the best solutions. 

Aspect 2 focuses on improving search mechanisms, namely, regu-
lating the distribution of all potential positions of particles. Hybrid op-
erations with genetic algorithm [7] and differential evolution [8] fall 
into this category. The proposed DEEPSO-OL integrates the orthogonal 
learning (OL) operator to search deeper near good solutions. The OL is a 
technique that leverages orthogonal arrays to sample and exploit the 
search space more efficiently instead of exhaustively evaluating all 
possible feasible solutions. 

Aspect 3 focuses on different mechanisms to apply perturbations to 
position and velocity. It improves the diversity of solutions and avoids 
stagnation [9]. There are informed or random perturbations. The 
informed mechanisms typically use the information of specific solution 
populations as the parameters (e.g., mean value) for a probability dis-
tribution, and then map random values are around them, while random 
perturbation simply introduces a stochastic value to perturbate a 

Fig. 1. Illustration of standard PSO.  

Fig. 2. Illustration of DEEPSO.  

Fig. 3. Star and ring topology (red is the global best).  

Table I 
Best bread experiment.  

Factors A B C D 

Levels Flour (lbs) Yeast (oz) Salt (oz) Water(oz) 

1 L1  5  0.5  0.3  4 
2 L2  4  0.6  0.4  3  

Table II 
Best combination levels by OED.  

Comb. A: Flour B: Yeast C: Salt D: Water Fitness 
value 

Cb1 (1) 5 (1) 0.5  
(1) 0.3 

(1) 4 f1 = 31 

Cb2 (1) 5 (1) 0.5  
(1) 0.3 

(2) 3 f2 = 54 

Cb3 (1) 5 (2) 0.6  
(2) 0.4 

(1) 4 f3 = 38 

Cb4 (1) 5 (2) 0.6  
(2) 0.4 

(2) 3 f4 = 53 

Cb5 (2) 4 (1) 0.5  
(2) 0.4 

(1) 4 f5 = 49 

Cb6 (2) 4 (1) 0.5  
(2) 0.4 

(2) 3 f6 = 42 

Cb7 (2) 4 (2) 0.6  
(1) 0.3 

(1) 4 f7 = 57 

Cb8 (2) 4 (2) 0.6  
(1) 0.3 

(2) 3 f8 = 62 

levels  Factor Analysis 
L1 (f1+f2+f3+f4)/ 

4=44 
(f1+f2+f5+f6)/ 
4=44 

(f1+f2+f7+f8)/ 
4=51 

(f1+f3+f5+f7)/ 
4=43.75 

L2 (f5+f6+f7+f8)/ 
4=52.5 

(f3+f4+f7+f8)/ 
4=52.5 

(f3+f4+f5+f6)/ 
4=45.5 

(f5+f6+f7+f8)/ 
4=52.75 

Results A2 B2 C1 D2  
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particle’s position or the velocity. The DEEPSO-OL uses the informed 
perturbation on its global best solution with a normal distribution. Such 
mechanism equips PSO with better chance of escaping from local min-
imal due to the randomness introduced in the search process. 

Aspect 4 includes the topology and the size of the population. To-
pology is crucial in achieving a balance between exploration and 
exploitation in search. The fully connected star, ring, and von Neumann 
topologies are widely recognized, and other topologies, such as hierar-
chical and small-world networks, have also been studied in PSO litera-
ture. Montes de Oca et al. [10] introduced a topology that reduces 
connectivity over time. Regarding population size, the number of par-
ticles changes dynamically in the iteration process according to some 
metrics [11]. In general, the population size will impact the tradeoff 
between solution quality and convergence speed. It is worth noting that 
increasing population size does not always guarantee better solution 
quality. In some complex cases where there are many local minima, the 
smaller population size outperforms the larger population size because 
of the prompt response of moving out of a local minimum. This paper 
introduces a stochastic star topology on particles, aiming to establish 
just about the right amount of information sharing and to avoid high 
computational burden. The details of DEEPSO-OL are explained in 
Section II. 

In summary, this paper proposes a novel variant based on evolu-
tionary PSO (EPSO). EPSO combines the idea of evolutionary computing 
and exploring capability of particles such that system parameters can 
self-evolve intelligently to adapt different problems [12,13]. Then, a 
differential evolution (DE) concept is adopted and hybridized into EPSO 
to become DEEPSO. The DE thrives on the idea of using macro-gradients 
to achieve progress in the search for the optimum. The DEEPSO uses the 

same concept, abandoning the idea of single particle memory, and 
replacing it with collective memory. In this work, it is further modified 
with a different neighborhood topology to explore the domain more 
efficiently. In addition, to enhance its exploitation, DEEPSO is integrated 
with the orthogonal learning (OL) strategy, to become DEEPSO-OL. With 
the assistance of orthogonal experimental design (OED), it generates 
promising solutions. OED is employed to identify the optimal combi-
nation levels through a relatively small number of experimental tests, 
thereby extracting more valuable information from past searches 
[14–16]. 

To evaluate the performance of DEEPSO-OL, an optimal power flow 
(OPF) and its variant, OPF incorporating wind power (WOPF) are pro-
posed. The OPF aims to optimize the voltage stability, power losses, 
generation cost, and/or other pertinent factors in a manner that satisfies 
the system constraints. Such non-linear, non-convex problem is a very 
good real-world problem to apply modern heuristic optimization 
methods to search for near-optimum solution due to their efficiency [17, 
18]. Meanwhile, due to the increasing penetration of renewable energy 
sources, there is a great practical need to develop WOPF. Unlike tradi-
tional power sources, wind energy is highly uncertain and uncontrol-
lable [19,20]. Since PSO, by nature, performs stochastic search in the 
solution domain, it is believed to have positive contribution to solving 
WOPF problem characterized by the uncertain wind power generation. 
The power output of wind farms fluctuates, and these fluctuations will 
have a large impact on the whole power system. Traditional determin-
istic optimization methods may not be able to account for these un-
certainties and therefore result in suboptimal or even infeasible 
solutions. In contrast, evolutionary methods embedded with stochastic 
search have been demonstrated to have the ability to counteract the 
uncertain nature in the optimization problem [21]. 

Lezama et al. [22] have formulated a competition framework for 
real-world complex power distribution network optimization where an 
aggregator tries to maximize its profit by selling and buying energy in 
day-ahead local market under uncertainties due to renewable energies, 
electric vehicles (EVs), etc. The purpose of the competition is to 
demonstrate the validity of stochastic optimization methods such as 
PSO, GA, ABC, etc., in solving the problems with reliable and satisfac-
tory solution and much less computing time compared to traditional 
mathematical programming. The stochastic behavior of the system is 
simulated by creating scenarios with Monto Carlo simulation which can 
be decomposed into deterministic models [23]. 

In this paper, the wind power incorporated economic dispatch (ED) 
model by Yu and Bhattarai [24] is extended to OPF problem. The 
objective of the ED is to minimize generation costs while meeting the 

Fig. 4. Effect of valve point loading on a quadratic cost function.  

Fig. 5. Modified IEEE 30-bus.  

Table III 
IEEE 30-bus system characteristics.  

Variables Values Details 

Buses  30 Ref [34] 
Branches  41 Ref [34] 
Generators  6 Bus 1, 2, 5, 8, 11 and 13 
Load voltage limits  24 [0.95 – 1.05] 
Shunt Cap  9 Bus 10, 12, 15, 17, 20, 21, 23, 24 and 29 
Xfmr Tap  4 Branches 4–12, 6–9, 6–10, 28–27 
Control variables  24 N/A  

Table IV 
Cost coefficients for cases 1 and 2.   

a($/h) b($/MWh) c($/MW2h) d($/h) e(rad/MW) 

Bus 1  0  2  0.00375  18  0.037 
Bus 2  0  1.75  0.0175  16  0.038 
Bus 5  0  1  0.0625  14  0.04 
Bus 8  0  3.25  0.00834  12  0.045 
Bus 11  0  3  0.025  13  0.042 
Bus 13  0  3  0.025  13.5  0.041  
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overall demand, which can be formulated as a linear programming 
problem. The major difference between ED and OPF is that the in-
equalities for OPF contains not only generators’ output limits, but also 
the system parameters, such as transmission line capacity, bus voltage 
limits, transformer limits and reactive compensator limits. Instead of 
generating random varieties by inverse transform method and con-
ducting Monte Carlo simulation, penalty cost is added to reflect the 
additional cost resulting from the uncertainty of wind power. Such 
mechanism avoids generating huge number of scenarios requiring high 
computational burden and provides penalty factors for decision maker 
to accurately model the wind power generating system. The cost 
resulting from uncertainty is comprised of two elements: surplus cost 
and wind power deficit cost. 

To the best of our knowledge, the application of DEEPSO-OL in the 
power system area has not been developed yet, which is one motivation 
for this work to develop practical and real-world benchmark test prob-
lems. The algorithm is tested on a modified IEEE 30-bus test system. 
Therefore, this work has two primary objectives: 1) develop a novel 
variant of PSO, named DEEPSO-OL; and 2) develop real-world bench-
mark problems and test the proposed DEEPSO-OL on these problems. 
The main contributions of this paper are summarized as follows:  

1) Proposed a novel PSO method based on orthogonal learning from the 
perspectives of evolving control parameters, deep search mecha-
nism, perturbations on solutions and novel topology.  

2) Implemented the proposed algorithm to a real-world non-linear 
optimization problem, OPF, and comparative study and sensitivity 
analysis are conducted to draw more insights of the new variant.  

3) A wind energy conversion system model, WOPF, to harness wind 
energy efficiently is developed under the framework of the OPF 
problem. 

The rest of the paper is as follows: Section 2 illustrates proposed 
DEEPSO-OL. Section 3 describes OPF and WOPF problems as well as 
how DEEPSO-OL is implemented. Section 4 provides detailed case 
studies, numerical results tested on the IEEE 30-bus system and com-
parison with other techniques and evaluates optimally scheduled wind 
power based on various penalty and reserve cost coefficients. Finally, 
the conclusion part is given in Section 5. 

2. Proposed methodology 

In this section, to facilitate the understanding of DEEPSO-OL, stan-
dard PSO is introduced first, followed by evolutionary PSO, differential 
evolutionary PSO, and the OL. The DEEPSO-OL improves the search 

Table V 
Comparison by algorithms of 4 scenarios in IEEE 30-bus.  

Scenario 1 
Method 

Fuel cost ($/h)    

Min Avg. Max Standard deviation T(s) Function evaluated 

DEEPSO-OL 800.411 800.413 800.418 0.00 33.3 15900 
DEEPSO 800.501 801.742 803.218 0.77 67.2 27900 
ABC 800.707 802.262 803.411 0.82 42.2 20065 
DE 802.629 803.031 803.509 0.25 39.8 20000 
PSO 800.648 802.101 804.201 1.11 41.6 20100 
ACDE [35] 800.411 800.413 800.418 0.00 83.2 N/A 
NSGA-III [36] 802.173 803.632 804.459 N/A 10.8 N/A 
AGSO [37] 801.287 801.750 802.509 N/A N/A N/A 
SCA [38]a N/A 800.102 N/A N/A N/A N/A 
MSCA [38]a N/A 799.310 N/A N/A N/A N/A 
SF-DE [29] 800.413 800.415 800.419 0.00 133.1 N/A 
SP-DE [29] 800.429 800.468 800.441 0.01 120.1 N/A 
MSA [39] N/A 800.510 N/A N/A 14.9 N/A  

Scenario 2Method 
Fuel cost considering valve effect ($/h)    
Min Avg. Max Standard deviation T(s) Function evaluated 

DEEPSO-OL 830.391 830.396 830.483 0.02 42.6 16860 
DEEPSO 830.469 831.558 833.433 0.58 70.1 28100 
ABC 831.125 834.081 838.326 1.71 50.4 20050 
DE 832.483 832.483 832.483 0.26 45.9 20000 
PSO 832.582 832.753 835.383 0.83 44.6 20100 
ACDE [35] 832.072 832.096 832.394 0.06 81.5 N/A 
SF-DE [29] 832.088 832.106 832.129 0.02 137.6 N/A 
SP-DE [29] 832.481 832.655 832.876 0.09 141.7 N/A 
Scenario 3 

Method 
Total loss (MW)    
Min Avg. Max Standard deviation T(s) Function evaluated 

DEEPSO-OL 3.021 3.021 3.032 0 38.8 14704 
DEEPSO 3.024 3.035 3.138 0.023 70.8 27667 
ABC 3.112 3.322 3.595 0.112 51.9 20077 
DE 3.276 3.311 3.371 0.03 46.5 20000 
PSO 3.051 3.072 3.331 0.051 54.7 20100 
MSA [39] N/A 3.101 N/A N/A N/A N/A 
ACDE [35] 3.084 3.085 3.086 0 82.3 N/A 
SF-DE [29] 3.084 3.086 3.086 0.003 84.5 N/A 
SP-DE [29] 3.084 3.085 3.086 0.003 136.4 N/A 
Scenario 4 

Method 
Minimize L-index    
Min Avg. Max Standard deviation T(s) Function evaluated 

DEEPSO-OL 0.097 0.111 0.121 0.005 44.3 15100 
DEEPSO 0.106 0.165 0.222 0.029 89.9 28500 
ABC 0.108 0.165 0.255 0.038 83.6 20090 
DE 0.146 0.152 0.156 0.003 59.2 20000 
PSO 0.106 0.131 0.181 0.016 80.3 20100 
SF-DE [29] N/A 0.137 N/A N/A 136.5 N/A 
SP-DE [29] N/A 0.137 N/A N/A 130.7 N/A  

a infeasible solutions due to the violation of state variables (exceeding load bus voltage limits) 
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Fig. 6. Convergence properties for Case 1 on 4 scenarios.  
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process by introducing adaptive weights, randomness on personal best, 
more efficient exploitation scheme, and stochastic topology. These im-
provements enhance the balance between exploitation and exploration, 
avoid the local minimal, and simplify system parameter tuning which 
are the shortcomings of the standard PSO. 

2.1. Particle swarm optimization (PSO) 

Particle swarm optimization [1] is a stochastic search algorithm that 
was initially designed for continuous optimization problems. Many 
variants have also extended the abilities for discrete problems [25]. Each 
particle i repeatedly searches in the solution domain according to ve-
locity V and position X (a feasible solution) update rules. The standard 
PSO (StdPSO) is described as follows: 

Xnew
i = Xi +Vnew

i (1)  

Vnew
i = wi0Vi +R1wi1

(
bi − Xi

)
+R2wi2

(
bg − Xi

)
(2) 

Eq. (2) consists of three components which can be intuitively 

interpreted as following: the first term denotes the particle’s inertia, 
which directs it to move along its previous direction, while the inertia 
weight wi0 is used to regulate the impact of the previous velocity. The 
second term is the particle’s memory to control the movement, which is 
affected by the personal best, bi. The final term represents the collabo-
ration of particles to control the movement, affected by global best, bg, 
found by the whole swarm. The second and third terms represent the 
cognitive influence (CI) and social influence (SI) on the particle’s 
movement respectively. The parameters wi1 and wi2 are the weights 
known as the acceleration coefficients (ACs) to regulate the impact of CI 
and SI, respectively; R1, R2 are random numbers generated from a uni-
form distribution in the range of [0,1], which introduce perturbation to 
help the algorithm avoid local minima. Variants on CI and SI to guide 
particles toward high-quality solutions is one of the main directions to 
obtain better performance. Position X will be assessed to obtain the 
fitness value by the objective function f(⋅) at each iteration. 

Fig. 1 displays how a new particle is influenced by inertia (moving in 
the same direction), memory (affected by the particle’s past best posi-
tion), and cooperation (attracted to the global best position). Many 

Fig. 7. Convergence properties for Case 1 on 4 scenarios with similar initial solution.  
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literatures have discussed the importance of balancing exploration and 
exploitation [2,26], which was the motivation to design innovative 
variants over the years. 

2.2. Differential evolution evolutionary PSO (DEEPSO) 

Evolutionary PSO (EPSO) has a similar structure on velocity update 
compared with the StdPSO, but the parameters will undergo automatic 
evolution, guided by a constant mutation rate, during the search pro-
cess. 

Vnew
i = w∗

i0Vi +w∗
i1

(
bi − Xi

)
+w∗

i2

(
b∗

g − Xi

)
(3)  

b∗
g = bg +w∗

i3N
(

0, 1
)

(4)  

w∗
ik = wik

[
logN

(
0, 1

)]
τ (5)  

where w∗
ik (w

∗
i0,w∗

i1…) are weights and τ is a constant mutation rate. Note 
that in (5) weights are not constant as opposed to the StdPSO but are 
under the mutation process dependent on a log distribution with mean 
0 and variance 1. This improvement lies in the design Aspect 1 
mentioned above for control parameters. The global best b∗g is modified 
by adding a normally distributed (mean 0 and variance 1) random 
variable to the original bg. Thus, EPSO is also guided by three compo-
nents, inertia, perception (different from the StdPSO which consists of 
memory as the second component) and cooperation. Note that even the 
second term in Eq. (3) still uses particle’s personal best and yet this term 
is self-evolving because of the weight w∗

i1. In addition, cooperation term 
is attracted by the approximate global best rather than the real one, 
which can help the swarm escape local optima and explore more diverse 
regions of space. Such modification enhances the exploration ability to 
cover more possible solutions [27]. 

Differential evolution (DE) is employed to generate a new solution, 
Xi, which combines the information of two random individual popula-
tion (Xr1, Xr2). This process supports the diversity of a population, 
thereby increasing the exploration in the solution domain. Miranda and 
Alves proposed the DEEPSO for the first time by combining the EPSO 
and DE [28]. DEEPSO was also successfully implemented to address 
voltage stability issue by Bai, Lee, and Eke [12]. Thus, the velocity up-
date function is now defined as: 

Vnew
i = w∗

i0Vi +w∗
i1

(
Xr1 − Xi

)
+w∗

i2

(
b∗

g − Xi

)
(6) 

Comparing (6) with (3), the form of DEEPSO is more like EPSO. The 
only variation is to substitute the personal best, bi with Xr1 in the second 
term as illustrated in Fig. 2. 

Fig. 2 illustrates a flavor of DE, where the Xr1 information is added to 
the EPSO. Similarly, DEEPSO consists of inertia, perception, and coop-
eration terms. 

As mentioned above, there are certain communication structures 
among particles, namely particles neighborhood topology. Classical 
communication structure is the star shape where all individuals get the 
same opportunities to know about the information of global best bg. 
Another alternative is ring shape where each particle only knows its two 
neighbors’ information as shown below in Fig. 3. 

The conventional star configuration could result in premature 
convergence due to excessive communication that limits exploration of 
the search space, whereas the ring configuration runs the risk of leading 
the process towards a set of independent parallel searches due to 
insufficient information exchange. Therefore, in this paper, a stochastic 

star topology has been introduced to avoid traditional topologies’ 
drawbacks where a communication probability matrix P is set to allow 
certain particles to access the global best as shown below: 

Vnew
i = w∗

i0Vi +w∗
i1

(
Xr1 − Xi

)
+w∗

i2P
(

b∗
g − Xi

)
(7)  

where P is the communication probability matrix, which is a diagonal 
matrix with 0 or 1 to decide if Xican access the approximate global best b∗g 

information, as the last term in (7) is expanded as: 

[
w∗

1,2 w∗
2,2 w∗

3,2 ⋯ w∗
n,2

]

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
0 0 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
b∗

g − X1

)

(
b∗

g − X2

)

(
b∗

g − X3

)

⋮
(

b∗
g − Xn

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8) 

It is noted that the communication probability matrix P determines 
which (b∗

g − Xi) term is multiplied by either one or zero, in other words, 
it determines which Xi can access the approximate global best informa-
tion. Algorithm 1 illustrates a procedure for creating the communication 
matrix P: 

Algorithm 1. Create communication P matrix  

It is important to introduce this communication probability matrix P 
to balance the exploration and exploitation because too much infor-
mation from approximate global best b∗g leans to exploitation in the so-
lution domain. The impact of the various probability of exchanging 
information with neighbors is given in the sensitivity analysis under 
Section IV. In this work, rule (7) is further modified as following to gain 
a better performance by our empirical analysis: 

{Vnew
i = w∗

i0Vi + w∗
i1

(
Xr1 − Xi

)
+ w∗

i2P
(

b∗
g − Xi

)

Vnew
i = w∗

i0Vi + w∗
i1

(
Xi − Xr1

)
+ w∗

i2P
(

b∗
g − Xi

)

}

(9) 

If the fitness value of the Xr1 is less than that of Xi, e.g., F(Xr1) < F(Xi), 
use the second equation in (9), otherwise, employ the first equation. 
Algorithm 2 gives the pseudocode of DEEPSO. Note that line 8 and 9 
create new copies of current V and X using the mutated weights in line 6. 
From line 15 – 17, final population and other parameters are set after 
comparing the current population with the copied population. 

Algorithm 2. DEEPSO 
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2.3. Orthogonal learning 

Orthogonal learning (OL) is the process based on orthogonal exper-
imental design (OED) to get the best candidate with fewer combinations. 
OED is an experimental design used to study the effect of several factors 
simultaneously and the best combination of factor levels can be found in 
several tests. Table I gives an example of finding the best combination of 
ingredients to make bread. 

In this experiment, there are four factors (optimization variables): 
flour (A), yeast (B), salt (C) and water (D) to make the bread. Each factor 
consists of two levels, e.g., the flour can be 5 or 4 lbs, salt can be 0.3 or 
0.4 lbs, etc. Thus, there are total of 24 = 16 combinations. Through the 
implementation of OL, it is possible to accurately predict the optimal 
combination by testing significantly fewer representative combinations, 
therefore OED can reduce the total testing cost. Those representative 
combinations are chosen according to the orthogonal array (OA). Details 
of OA and factor analysis (FA) are introduced as follows:  

1) Orthogonal Array: firstly, ‘LN(sd)’ is used to represent an array with s 
levels (possible values) in each factor under d factors (optimization 
variables). Then, L and N denote an array and the total combination 
numbers, respectively [14–16]. For example, L8(24) array given 
below contains 4 factors (optimization variables), 2 levels (possible 
values, 1 or 2) per factor, and 8 combinations. 

L8
(
24) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 1 1 2
1 2 2 1
1 2 2 2
2 1 2 1
2 1 2 2
2 2 1 1
2 2 1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10) 

The detailed definition and formulation of OA can be found in [29]. 
The idea is that instead of searching 24 = 16 combinations exhaustively, 

Table VI 
Comparison by algorithms for 4 scenarios in IEEE 30-bus.  

Scenario 
1 
Method 

Fuel cost ($/h)    

Min Avg. Max Standard 
deviation 

T(s) Function 
evaluated 

DEEPSO- 
OL 

800.423 800.437 800.472 0.01 21.2 9780 

DEEPSO 800.501 801.312 802.218 0.72 20.2 10100 
ABC 803.701 806.893 811.018 2.07 23.4 10050 
DE 801.182 802.694 807.026 1.23 18.9 10000 
PSO 801.991 802.141 802.142 0.03 21.8 9999 
Scenario 

2 
Method 

Fuel cost considering valve effect 
($/h)    
Min Avg. Max Standard 

deviation 
T(s) Function 

evaluated 
DEEPSO- 

OL 
830.391 830.485 832.724 0.42 23.2 9850 

DEEPSO 830.969 832.578 834.433 0.79 20.5 10100 
ABC 832.146 836.706 845.471 3.41 25.4 9950 
DE 832.788 833.483 838.401 1.11 24.9 10000 
PSO 832.582 833.122 836.973 1.14 21.9 10000 
Scenario 

3 
Method 

Total loss (MW)    
Min Avg. Max Standard 

deviation 
T(s) Function 

evaluated 
DEEPSO- 

OL 
3.025 3.024 3.067 0.050 24.6 9925 

DEEPSO 3.074 3.095 3.188 0.087 23.8 10100 
ABC 3.281 3.856 4.776 0.348 25.8 10055 
DE 3.344 3.487 3.576 0.060 22.6 10000 
PSO 3.051 3.083 3.271 0.062 26.7 10100 
Scenario 

4 
Method 

Minimize L-index    
Min Avg. Max Standard 

deviation 
T(s) Function 

evaluated 
DEEPSO- 

OL 
0.108 0.152 0.226 0.030 32.3 9772 

DEEPSO 0.111 0.195 0.282 0.079 30.9 10100 
ABC 0.100 0.135 0.173 0.014 39.9 10053 
DE 0.117 0.171 0.241 0.030 32.2 10000 
PSO 0.116 0.135 0.191 0.014 38.5 9999  
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OA only use 8 of them to design an experiment to predict the best 
combination. 

OA is a predefined table for the OED method to work on, which is the 
fundamentals for defining representative combinations. Table II pre-
sents the eight experiments that are specified by L8(24). For example, the 
first row in (10) is [1 1 1 1], indicating that factors A (flour), B (yeast), C 
(salt), and D (water) are all set to the first levels (5lbs, 0.5 oz, 0.3 oz, 
4 oz) from Table I. The last column in Table II represents the evaluation 
of the experiments for each combination of ingredients using a fitness 
function that determines the level of deliciousness. The fitness function 

here is not a particular mathematical formula, but a professional judge 
who would rate combination of ingredients by outputting a fitness value 
based on his/her judgment. Higher value means the bread is more 
delicious.  

2) Factor Analysis: Factor analysis (FA) involves determining the 
optimal combination of levels (potential values). Based on the 
experimental results from OA with N cases, FA is performed to 
identify the optimal combination. Table II illustrates the FA process, 
with further details provided in [16]. As shown in Table II, the 
optimal combination determined by FA is (A2, B2, C1, and D2). It 
happens that the corresponding combination (4 lb, 0.6 oz, 0.3 oz and 
3 oz) is Cb8 in Table II. However, it is quite common to predict the 

best combination that may NOT appear in the original test table. 
Thus, as OL is implemented in the DEEPSO algorithm, the deeper 
search for the best candidate solution can be efficiently conducted by 
predicting the best combination of control variables as a solution 
vector. Constructing the best candidate is summarized in Algorithm 
3:  

Algorithm 3. Construct candidate solution by OL 

2.4. DEEPSO with orthogonal learning (DEEPSO-OL) 

From the above discussion and preparation, the following DEEPSO- 
OL is now proposed. To construct a candidate solution by OL, a trans-
mission solution Tk is introduced: 

Tk = Xi + rand
(
0, 1

)
×
(
bg − Xi

)
k ∕= i ∈

[
1, n

]
(11)  

where bg is the global best; k and i are different particle indices in the 
swarm. The combination of information from Tk and Xi results in an 
improved candidate solution Xs. Algorithm 4 outlines the framework of 
the DEEPSO-OL algorithm: 

Fig. 8. Sensitivity heatmap on size N and probability p for Scenario 1.  
Fig. 9. Sensitivity heatmap on size N and probability p for Scenario 2.  
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Algorithm 4. DEEPSO-OL 

The overall structure can be divided into two parts. Line 4 – 22, is the 
DEEPSO, and line 23 – 25 is the DEEPSO-OL. Note that we introduce a 
pre-defined OL probability p in line 2 to control the process such that 
either DEEPSO or DEEPSO-OL is executed at each iteration to reduce 
computation cost. Therefore, the complexity of the algorithm mainly lies 
on function evaluation at line 16. Depending on probability p, the 
minimal total function evaluations is between 2×n×iter (fully DEEPSO) 
and 2×n×M×iter (fully DEEPSO-OL), where n is the number of the 
population, iter is the iteration numbers, and M is the number of rows in 
constructed OA. In addition, M depends on the dimension of optimiza-
tion variables. It is noticed that if we decide to use full DEEPSO-OL, the 
computation burden is high, therefore, to find a good probability 
threshold p is crucial when scaling the algorithm. The way to evaluate 
solutions (f(Xnew

i )) in Algorithm 4 is done with the help of AC Power flow, 
specifically, solved by Newton-Raphson method [12]. Essentially, control 
variables as solutions are fed into the AC Power flow solver, then 
high-dimensional nonlinear functions are calculated to obtain state 
variables. Finally, objective functions, dependent on control and/or 
state variables, are constructed and calculated to evaluate the fitness. 

2.5. Exploration and exploitation balance analysis 

To illustrate the exploration and exploitation properties of algo-

Fig. 10. Sensitivity heatmap on size N and probability p for Scenario 3.  
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rithms, we adopted the following equations and algorithm from [30] to 
quantify the balance performance. The results are presented in Section 
4. To calculate the increase and decrease in the distance among search 
agents, a diversity measurement known as the dimension-wise diversity 
measurement is calculated by Eqs. 12 - 14 in each iteration. The di-
versity measurement will be used to calculate the exploration and 
exploitation in each iteration. 

DIVj =
1
N

∑N

i=1

⃒
⃒median

(
Xj) − Xj

i

⃒
⃒ (12)  

DIV =
1
D

∑D

j=1
DIVj (13)  

DIVmax = max
{

DIV1,DIV2,⋯,DIVMaxiter} (14)  

where median (Xj) is the median of jth dimension in the whole popula-
tion. Xj

i is the jth dimension of particle i; N is the total number of particles 
in the population and D is total number of the dimension for each par-
ticle. Algorithm 5 presents the pseudo-code for calculating diversity. 

Algorithm 5. DIVERSITY CALCULATION 

The exploration is calculated from (15), which is the ratio between 
the diversity in each iteration and the maximum attainable diversity. On 
the other hand, exploitation from (16) is just the complementary per-
centage to exploration, which reflects the difference between the 
maximum diversity and the current diversity of an iteration. 

Exploration% =
DIV

DIVmax
× 100 (15)  

Exploitation% =
|DIVmax − DIV|

DIVmax
× 100 (16)  

3. Formulation of problems 

In this section, the OPF and WOPF problems are developed and then 
the process of applying DEEPSO-OL is described. 

3.1. OPF and WOPF 

The goal of conventional OPF is to optimize a power system’s 
objective function by selecting control variable settings that satisfy 
network constraints and operational requirements. The mathematical 
formulation of this objective is: 

min f (x, u) (17)  

S.T. g(x, u) = 0 (18)  

h(x, u) ≤ 0 (19)  

where the control variable vector u comprises generator bus voltage, 
transformer setpoint, generator real power, and shunt compensator at 
specified buses. The state variable vector x encompasses real power at 
the slack bus, reactive power at the generator bus, voltage at the load 
bus, and transmission line capacity. Note that some of the state variables 
are used to construct objective functions. The set of equality constraints 
g includes power flow balance equations at each node, while the set of 
inequality constraints h comprises limits on generator real and reactive 
power, transformer setpoint, and shunt capacitor. 

Usually, two distinct objective functions for fuel cost are considered, 
namely quadratic cost functions with and without valve point loading in 
Eqs. (20) and (21), respectively. 
∑NG

i=1
ai + biPGi + ciP2

Gi (20) 

Fig. 11. Sensitivity heatmap on size N and probability p for Scenario 4.  
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∑NG

i=1
ai + biPGi + ciP2

Gi +
⃒
⃒disin(ei

(
PGi,min − PGi

))⃒
⃒ (21)  

where PGi denotes the active power on the i-th unit. Fig. 4 illustrates the 
impact of valve point loading on a quadratic cost function. In a power 
plant, steam is regulated by valves to enter the turbine through separate 
nozzle groups. Optimal efficiency is attained when each nozzle group 
operates at full output [31]. To achieve the maximum possible effi-
ciency, valves must open in sequence, leading to a fluctuating cost curve 
as depicted in Fig. 4. 

The third objective function minimizes the total power loss as cur-
rent flows along the transmission lines. It is defined as the total power 
loss: 
∑Nl

k=1

rk

r2
k + x2

k

[
V2

i +V2
j − 2ViVjcos(δi − δj

)]
(22) 

The fourth objective function minimizes the L-index which indicates 
the system’s voltage stability. This index denotes the proximity of the 

system to collapse. The L-index varies between 0 (no load condition) and 
1 (voltage collapse), and the bus with the highest L-index is the most 
susceptible bus. In other words, each bus has its L-index, and the one 
with the largest value needs to be minimized. The L-index for j-th bus is 
given as: 

Lj =

⃒
⃒
⃒
⃒
⃒
1 −

∑Ng

i=1
Fji

Vi

Vj
∠
(

θji + δi − δj

)⃒⃒
⃒
⃒
⃒

(23) 

The control variables for OPF consist of the real power output on all 
generating buses except the slack bus, the voltages at all generating 
buses, the transformer taps, and the shunt capacitors, which are denoted 
as: 
[
PG,2⋯PG,i,VG,1⋯VG,j,T1⋯Ti,QC,1⋯QC,i

]
(24) 

The equality constraints g in Eq. (18) are the AC power flow balance 
equations at each bus, which state that the power flowing into a specific 
bus equals the power flowing out it. This is defined as: 

Fig. 12. Balance analysis.  

Fig. 13. Boxplot for Scenario 1.  Fig. 14. Boxplot for Scenario 2.  
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Pi = Vi

∑N

j=1
VjYijcos(δi − δj − θij

)
Qi = Vi

∑N

j=1
VjYijsin(δi − δj − θij

)
∀i, ∀j

(25) 

The inequality constraints h (19) encompasses security constraints, 
transformer tap positions, generator limits, shunt capacitor limitations, 
and voltage and transmission line flow restrictions for the load buses. 

Generator limits: 

PGi,min ≤ PGi ≤ PGi,max  

QGi,min ≤ QGi ≤ QGi,maxVGi,min ≤ VGi ≤ VGi,max i ∈ NG (26) 

Tap positions of transformers: 

TPi,min ≤ TPi ≤ TPi,max i ∈ NT (27) 

Shunt capacitors constraints: 

Qci,min ≤ Qci ≤ Qci,max i ∈ NC (28) 

Security constraints on the bus voltage and transmission line flows: 

VLi,min ≤ VLi ≤ VLi,max i ∈ NpqSLi ≤ SLi,max i ∈ Nl (29)  

where the fuel cost coefficients of the i-th unit are represented by ai, bi, ci, 

di, ei; PGi, which denotes the real power of the i-th unit; Vi symbolizes the 
voltage magnitude at bus i; rk and xk indicate the resistance and reac-
tance of the transmission line k that connects bus i and j; Vi, Vj, δi and δj, 
which represent the voltages and angles at bus i and j, respectively; ω is 
the weighting factor; Yij and θij are the Y-bus admittance matrix elements 
between bus i and j; Npq denotes the number of PQ buses; Nl represents 
the total number of transmission lines; The variables in this equation 
include: NG represents the number of generators; NT denotes the number 
of tap-changing transformers; PGi,min/PGi,max, QGi,min/QGi,max and VGi,min/ 
VGi,max, which signify the minimum/maximum real power, reactive 
power, and voltage limits of generating unit i; TPi,min/TPi,max and Qci,min/ 
Qci,max represent the limits for transformers and shunt capacitors, 
respectively; VLi,min and VLi,max, which indicate the limits of load bus 
voltage; and SLi,max denotes the maximum line capacity of transmission 
line i. 

The problem considers the real power generation of PV buses, 
voltage at all generator buses, transformer tap settings, and shunt 
compensators as control variables, which are initially assigned random 
values within the feasible domain. A penalty function is introduced to 
ensure that the dependent/state variables are also within the feasible 
domain, and to handle the inequality constraints. Specifically, the pen-
alty function is defined and utilized as follows. 

Pen(xi) =

⎧
⎨

⎩

(
xi − xi,max

)2

(
xi,min − xi

)2

0

⎫
⎬

⎭

if xi > xi,max
if xi < xi,min

if xi,max ≤ xi ≤ xi,max

(30)  

where p(xi) indicates that the penalty function of dependent variable xi 
at bus i. The penalty cost increases quadratically when the dependent 
variables exceed their respective limits and zero, otherwise. Therefore, 
the augmented objective function is described by adding the penalty 
function for the slack bus, reactive power generation, PQ bus voltage, 
and transmission line capacity as follows: 

F = f +CpPen(PG1)+Cq

∑NG

i=1
Pen(QGi)+Cv

∑Npq

i=1
Pen(VLi)

+Cs

∑Nl

i=1
Pen(SLi)

(31)  

where f is the original cost function (17), Cp, Cq, Cv and Cs are normally 
large values and they represent penalty factors for the real power gen-
eration of the slack bus, reactive power output of the generator buses, 
PQ bus voltage, and transmission line capacity, respectively. Obviously, 
if variables violate inequality limits, their corresponding cost function 
value are to be penalized to a large value, then the solution is more likely 
to be abandoned. 

For those who are not in power systems background, readers can 
simply consider the objective functions as the evaluation functions 
where the outputs are the fitness values that justify the quality of input 
position vectors in DEEPSO-OL. 

3.2. OPF incorporating wind power (WOPF) 

The essence of WOPF is to optimize the objective function (minimal 
loss, cost, stable voltage profile, etc.) when wind farms are connected at 
nodes in a power system grid. It raises another difficult question for 
system operators to operate grid effectively and reliably, because wind 
power is an intermittent source with uncontrollable nature. A common 
approach to tackle the stochastic behavior of the wind is to create sce-
narios and each scenario is considered as deterministic programming by 
Monte Carlo simulation [23]. Yet such an approach requires a lot of 
computations. However, this paper considers wind power uncertainty as 
a random variable and introduces an additional penalty cost in the un-
known future of the wind power. This section incorporates wind power 
generators into the classical OPF problems to formulate WOPF. 

The model was designed from the viewpoint of system operators 
(SOs). It is common that the SOs own assets such as conventional plants 
and/or wind farms. However, this paper assumes the SOs do not own Fig. 16. Boxplot for Scenario 4.  

Fig. 15. Boxplot for Scenario 3.  
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any assets but merely manage power in the market. Since wind power is 
uncertain, there will be overestimation or underestimation compared to 
the power committed for next day. The overestimation (reserve cost) is 
when the actual wind power generation is short of the scheduled 
reference estimated, in which case, reserve power will be purchased 
from other sources to meet the deficiency, and otherwise load will be 
shed. Those activities lead to incremental costs for the SOs. When the 
actual wind power generation exceeds the expected planned reference 
generation, an underestimation (penalty cost) occurs, meaning that the 
SO has already purchased additional electricity that would not have 
been purchased from the wind farm, but must handle the actual 
remaining wind power. It is note that if SOs own wind farms, the cost of 
underestimating penalty will not exist. SOs usually sell additional wind 
power to adjacent power grids through re-dispatching. If none of the 
above methods can be achieved, excess energy must be released through 
a pseudo load resistor. In summary, these activities can be modeled by 
overestimating and underestimating the penalty cost function, and in-
crease to power generation costs while supporting load demand and 
adhering to system constraints, as shown below: 

Ftotal =
∑M

i
fi(Pi)+

∑N

i
fω,i(ωi)+

∑N

i
fp,ω,i

(
Wi,av − ωi

)
+

∑N

i
fr,ω,i

(
ωi − Wi,av

)
0

≤ ωi ≤ ωr,i

(32) 

where Ftotal is the objective function for WOPF; there are M thermal 
plants, and N wind farms; ωi and ωr,i are the scheduled wind power and 
rated power of the i-th wind generator, respectively; Wi,av is a random 
variable with probabilities varying with a Weibull probability density 
function (PDF) with values 0 ≤ Wi,av ≤ ωr,i. The objective function in-
cludes four aspects:  

1) The first term represents fuel cost for thermal plants defined in (20) 
and (21).  

2) The second term represents direct cost of wind plants, in which 
fω, i(⋅)is the cost function depending on ωi. Here, Assume a value of 
zero for the sake of simplicity.  

3) The third term represents the penalty for underestimating wind 
power, where fp,ω, i(⋅)is the penalty cost function depending on Wi,av 
and ωi.  

4) The fourth term represents the penalty for overestimating wind 
power, where fr,ω, i(⋅)is the cost function for reserve cost. The deri-
vation of those penalty functions is presented in the following. 

In summary, the control vector u of WOPF consists of scheduled wind 
power ωi, power generation at PV bus PG,i, voltage at generator buses 
VG,i, transformer taps Ti, and shunt capacitors QC,i, which is expressed as: 
[
ω1⋯ωi,PG,2⋯PG,i,VG,1⋯VG,j,T1⋯Ti,QC,1⋯QC,i

]
(33) 

The equality and inequality functions will remain unchanged except 
for the inclusion of an additional constraint for wind power, 
0 ≤ ωi ≤ ωr,i. 

It is assumed that the underestimation penalty cost and the over-
estimation reserve cost have linear relationships with the gap between 
the actual and scheduled wind generation [24]. Then the penalty and 
reserve cost functions, respectively, can be calculated as: 

fp,ω,i

(

Wi,av − ωi

)

= kp,i

(

Wi,av − ωi

)

= kp,i

∫ ωr,i

ωi

(ω − ωi)fW(ω)dω (34)  

fr,ω,i

(

Wi,av − ωi

)

= kr,i

(

ωi − Wi,av

)

= kr,i

∫ ωi

0
(ωi − ω)fW(ω)dω (35)  

where kp,i and kr,i are the cost coefficients for penalty and reserve, 
respectively, and fW(ω) is the PDF of wind power. Note that the unit of 
cost coefficients is ‘$/h•MW’. 

To assess both the reserve and penalty costs numerically, the PDF for 
the wind power output needs to be known. In general, the PDF of wind 
speed is following Weibull distribution, but to calculate the cost func-
tions in WOPF, the wind power PDF fW(ω) is derived from wind speed 
PDF, which is presented in Appendix B. 

The wind integrated model developed is implemented in the IEEE 30- 
bus system, where generators at bus 2 and 5 are replaced by wind power 
generators to conduct numerical assessment of the WOPF, as illustrated 
in Fig. 5. Details of this case study will be described in Section IV. 

Fig. 18. Power output with respect to penalty cost coefficient kp.  

Table VII 
Paired statistical T test.  

Cases DEEPSO-OL Second-best  P-value  

Best Avg. Best Avg.   

1  800.411  800.413  800.501  801.742 1.03e-10  
2  830.391  830.396  830.469  831.558 2.58e-12  
3  3.021  3.021  3.024  3.035 1.94e-10  
4  0.097  0.113  0.106  0.131 9.08e-11  

Fig. 17. Power output with respect to reserve cost coefficient kr.  
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4. Case studies 

The DEEPSO-OL has been implemented in a modified IEEE 30-bus 
system to demonstrate its performance. Comparisons are made with 
other modern heuristics, and sensitivity analysis as well as statistical 
analysis are performed. The computer used for simulation work has a 
2.4 GHz Intel core i9 Processor and 64 GB RAM. The power flow was 
computed by the MATPOWER package [32]. Two cases will be studied, 
Case 1 for OPF and Case 2 for WOPF. 

4.1. Case 1: OPF on IEEE 30-bus system 

Case 1 is a standard OPF problem which consists of four scenarios 
corresponding to four objective functions denoted in (20) - (23). The 
IEEE 30-bus system data, control variables, and cost coefficients can be 
found in [33]. Lines 4–12, 6–9, 6–10, and 28–27 are equipped with 
tap-changing transformers to adjust voltage, and buses (10, 12, 15, 17, 
20, 21, 23, 24 and 29) are installed with shunt capacitors to support 
reactive power. The system operates on a 100 MVA base and has an 
active power demand of 2.834 p.u. and a reactive power demand of 
1.262 p.u. Further details are provided in Table III. 

Simulations are run 30 times to obtain statistical conclusion. Results 
from other methods were also presented to compare the results, such as 
basic artificial bee colony (ABC), differential evolution (DE), PSO, 
DEEPSO, adaptive constraint differential evolution (ACDE), improved 
NSGA-III, adaptive group search optimization (AGSO), sine-cosine al-
gorithm (SCA), and modified sine-cosine algorithm (MSCA) [35–38,29]. 
Especially, DE is known for its effectiveness on continuous optimization 
problem [29] and thus there are four DE related algorithms chosen for 
comparison. Those are the state-of-the-art algorithms published within 
the last five years in high-quality journals. To have fair comparison, the 
max iteration is set to 200. The comparison including execution time and 
the number of function evaluations are given for four scenarios in 
Table V. Cost coefficients of Case 1 and Case 2 are listed in Table IV [35]. 
Note that for Case 1, only coefficients a, b and c are used. 

Scenario 1 is for the minimization with the quadratic fuel cost (20). 
Table V shows the comparisons of various algorithms for four scenarios 
respectively. From Table V, it is found that the minimum cost of 
DEEPSO-OL is 800.411 $/h, with 0 standard deviation. In Scenario 2, all 
buses with generating units have used the fuel cost function (21) with 
valve point loading. The minimum total fuel cost from DEEPSO-OL is 
830.391$/h, with 0.02 standard deviation. Scenario 3 is for the mini-
mization of the total transmission loss (22). Table V lists that the min-
imal line loss found by the proposed method is 3.021 MW, with 
0 standard deviation. Scenario 4 is for the minimization of the L-index 
(23). Table V shows that the minimal L-index is 0.111, with 0.005 
standard deviation. 

It is interesting to note that results on some published papers seem to 

be promising at the first glance, and yet there are either some control 
variables or state variables violating their limits [29,38]. The common 
reason is that the papers failed to consider voltages constraints (0.95 – 
1.05) on each PQ buses. In Appendix A, results of DEEPSO-OL from four 
scenarios are posted for cross check, and it is shown that the control 
variables are within constraints. 

Table V presents various statistics of algorithms including minimum, 
average, maximum, standard deviation, computation time and total 
number of functions evaluated. Since all scenarios are minimization 
problems and thus the smaller value they found, the better performance. 
A solution is feasible means that not only this solution is in its feasible 
domain, but other state variables depending on the solution are within 
limits as well. Some algorithms listed in Table V were infeasible ac-
cording to literature. In all, we consider that if the average fitness values 
over 30-run is less, the solution is more accurate; if the standard devi-
ation is less, the algorithm is more robust and if computation time and 
total function evaluated are less, the algorithm is more efficient. 

Results in Scenario 1 show that the proposed method found the least 
minimal cost compared to other approaches in the article and especially 
the ‘0’ standard deviation proves its robustness. Function evaluation 
times denotes that the proposed algorithm can find the best solution in a 
much less function evaluation process, which demonstrates its 
effectiveness. 

Results in Scenarios 2, 3 and 4 show that the proposed method 
outperforms other methods with least standard deviation (except Sce-
nario 4), time, and function evaluations. Especially in Scenario 3, a 
significant improvement in average value by 9.06 % was found 
compared with the original ABC, which demonstrated the exploitation 
power of the proposed method in a more complex solution domain. 

Fig. 6 shows the convergence properties of ABC, DE, PSO and 
DEEPSO-OL. For all scenarios, in total 200 iterations the proposed al-
gorithm not only outperforms others in the convergence speed, but also 
the initial solution shows higher quality than others in Scenarios 2 and 3. 
This is because perturbation has been added to the acceleration co-
efficients ω1 and ω2 and global best particle, bg. This is to increase the 
varieties of initial solutions such that they may contain more feasible 
information. 

To further compare and obtain more information on the performance 
of the algorithms, we ensure the same initial solution as a starting point 
for all algorithms, as shown in convergence plot Fig. 7. Also, we pur-
posely set the number of function evaluation to be around 10,000 such 
that it terminates at an early stage as shown in Table VI. By doing so, we 
can have a fair comparison on the performance and see which algorithm 
can find the best solution efficiently while performing relatively low 
function evaluation. Note that the number of function evaluation is not 
exactly 10,000 for all, but close to 10,000. 

From Table VI, we observed that our proposed algorithm out-
performed the rest of the algorithms in average and stand deviation 

Table VIII 
Comparison for case 2 with different penalty factors.  

reserve factor ($/h•MW) penalty factor ($/h•MW) W1 (MW) W2 (MW) Fuel cost ($/h)   

Min Avg. Max Std. T(s)  

0.01  0.01  
80 

50 456.224  456.744  457.012  0.93  31.2  

0.01  0.10  
80 

50 456.219  457.019  457.819  0.51  32.3  

0.01  0.15  
80 

50 457.023  457.436  458.163  0.65  39.7  

0.01  0.20  
80 

50 456.810  457.119  457.921  0.78  35.6  

0.10  0.01  
43.69 

49.96 715.856  716.488  716.488  0.95  39.9  

0.15  0.01  
29.47 

32.19 775.012  775.564  776.132  0.43  35.4  

0.20  0.01  
22.27 

23.85 805.553  806.058  807.253  0.77  36.1  
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metrics except for scenario 4. It appears that the proposed algorithm 
requires more function evaluations to achieve stable result for scenario 
4. Fig. 7 presents the convergence properties for all scenarios with 
similar initial solution. We can see that the proposed algorithm shows 
fast and stable convergence for scenario 1; For scenarios 2 and 3, it’s not 
the fastest one, yet it was able to achieve the best objective value in the 
end; the proposed algorithm’s convergence in scenario 4 was not able to 
stand out. Note that the function evaluation is still around 10,000 for 
each algorithm even though the total iteration is 200, which was ach-
ieved by adjusting the number of populations. 

4.2. Sensitivity analysis to DEEPSO-OL control parameters 

Since two control parameters, the population size N and communi-
cation probability p, are essential in DEEPSO-OL, the effects of these two 
parameters will be discussed. The following figures illustrate the impacts 
of the two control parameters by heatmaps. 

Fig. 8 shows the sensitivity heatmap for Scenario 1. In all, as popu-
lation size and communication probability vary, the results are stable. 
The best solution (minimum generation cost) can be found as 800.416 
$/h at N = 100 and p = 0.5. Fig. 9 illustrates the proposed algorithm is 
consistent with results of Scenario 1 as population and communication 
probability vary. The best solution can be found as 830.391 $/h at N =
100 and p = 0.1. Fig. 10 shows that the minimal power loss 3.023 MW is 
the best result found by (N = 90, p = 0.6) and (N = 100, p = 0.5). It is 
also noticed that when N = 20 and p = 0.4, the best solution is 3.024 
which offers a good trade-off between computational cost and best 
result. When population size increases, the performance would improve 
in general, as the color becomes lighter. Fig. 11 shows that as population 
and communication probability vary, the results also vary considerably. 
The best solution can be found as 0.098 at N = 20 and p = 0.1. 

4.3. Balance analysis 

Recall that diversity, exploration, and exploitation are defined in 
Section 2.5, and we plot the balance curves below as shown in Fig. 12. 
The population size is set to 20 and a total of 200 iterations is chosen for 
each algorithm for four scenarios. 

It is observed from Fig. 12 that the proposed method achieves a 
better balance on scenario 2, 3 and 4 compared with the rest algorithms 
indicated by the average exploration and exploitation values. The pro-
posed method for scenario 1 does not seem to achieve a good balance 
since the average exploration is 8.1 % and exploitation is 91.9 %, yet it 
still outperforms the rest of the algorithms from Tables V and VI. Even 
though researchers have identified the importance of balancing explo-
ration and exploitation, and yet the relationship between diversity and 
exploration and exploitation is still unclear and more research is needed 
[40]. In other words, there is not always a positive correlation between 
diversity measures and fitness. Note that exploration and exploitation 
equations in this work are also derived based on diversity, to achieve a 
better understanding of this, we will conduct more research and theo-
retical analysis in our future word. 

4.4. Statistical analysis 

Statistical analysis was conducted to draw more insights on the 
comparisons over 30 times run. Figs. 13 – 16 display the box plot for the 
comparison and Table VII shows the one-tail paired t-test to determine if 
the proposed algorithm is considered improvement statistically. Box plot 
is a statistical tool to visually show the mean, variance, 1st and 3rd 
percentile and maximum or minimum of a group of values. One-tail 
paired t-test is to test if one group’s mean is larger or less than the 
other group’s mean statistically. 

The first three scenarios’ boxplots have demonstrated that the pro-
posed method in the first column is the most robust with almost zero 
standard deviation and efficient with least median values. The second- 

best algorithm is DEEPSO. Another observation is that even though re-
sults from the original PSO for Scenarios 2, 3 and 4 seem to have good 
mean value and small standard deviation and yet they have multiple 
outliers which degrades the whole quality. A paired statistical T test is 
conducted to draw statistical conclusion shown in Table VII based on the 
comparison between proposed method and the second-best methods for 
each scenario. Note that the T test is conducted based on 30 simulations, 
and the best and average solution are listed for reader’s references. 
There are only DEEPSO, ABC, PSO, DE developed by authors and thus 
available to conduct 30 simulations and yet other results from references 
do not provide 30 simulations. Therefore, the second-best methods are 
only chosen from the above ones. The null hypothesis (H0) is defined 
such that the proposed method does NOT have significant improvement 
over the second-best method statistically. The alternative hypothesis 
(H1) is the opposite statement. 

The P-value is a measure of the probability of observing the given test 
statistics assuming that the null hypothesis is true. The P-value for each 
scenario is much less than 0.01, which means there is strong evidence at 
99 % confidence level to reject the null hypothesis. In other words, the 
proposed algorithm has significant improvement over the second-best 
method statistically. 

4.5. Case 2: wind power integrated OPF (WOPF) 

In this case, wind generators were added to buses 2 and 5 in the IEEE 
30-bus system. Two wind scheduled power are added in the control 
variables. The assumption is made that wind farms will consistently 
harness the maximum amount of available wind energy. Various reserve 
and penalty cost coefficients were selected to prove the system’s per-
formance. The unit for cost coefficients is $/h•MW and the economic 
impacts of reserve and penalty cost coefficients on power scheduling 
have been investigated in Fig. 17 and Fig. 18, respectively. Table VII 
gives the comparison in this case for the cost coefficients up to 0.2. 

Fig. 17 shows the optimal scheduled power output for wind power 
W1 and W2, and conventional power P1, P2 and P3, on bus 2, 5, 8, 11, 
and 13, respectively. Note that the W1 and W2 have power output limits 
of 20–80 and 15–50 (MW), respectively. When penalty cost coefficient 
kp is set to 0.1, while increasing kr from 0 to 1, the output power from W1 
and W2 decreases to their limits, because if the SO overestimates the 
wind power, it will be fined a big amount of expense due to the high 
reserve cost coefficient. Thus, as kr goes high, the SO prefers to schedule 
less wind power. 

Fig. 18 shows the optimal scheduled power output for wind power 
W1, W2, and conventional power P1, P2 and P3. When reserve cost 
coefficient kr is set to 0.1, while increasing kp from 0 to 1, the output 
power from W1 increases gradually and W2 remains at its maximum 
power limit (50 MW). Because if the SO underestimates the wind power, 
it will be fined a big amount of expense due to the high penalty cost 
coefficient; thus, as kp increases, the SO prefers to schedule more wind 
power. Thus, the relationships between the optimal scheduled power 
output and cost coefficients can be used as references for the SO in 
making decision. It is notable that the values of cost coefficients depend 
on the local power market, wind source and reserved power cost, the 
criteria of choosing the values can be a further research topic and thus is 
not the focus of this paper. To further demonstrate the economic impact 
of WOPF, several different combinations of cost coefficients are pre-
sented, observing the power output, as shown in Table VIII. 

There are several observations on Table VIII. (1) When reserve factor 
remains 0.01 ($/h•MW), as noted in the first four rows, and penalty 
factor was being increased from 0.01 to 0.20 ($/h•MW), maximum wind 
power (80 and 50 MW) was scheduled by DEEPSO-OL to W1 and W2. 
This is because the actual wind power cannot align with the scheduled 
one, the cost of purchasing power from other source remains low (low 
reserve factor value). Therefore, regardless of what the penalty factor is, 
maximum wind power was scheduled in this situation. (2) When reserve 
factor starts to increase to higher values, for instance, 0.20 ($/h•MW) in 
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the last row, the scheduled wind power output for both W1 and W2, as 
determined by DEEPSO-OL, was reduced to avoid overestimation, and 
associated high costs resulting from the implementation of high reserve 
factors. (3) Overall, the integration of wind power into the system will 
lead to a substantial reduction in total costs, being dependent on factors 
such as penalty and reserve coefficients, as well as the available wind 
resources. 

Note that although there are various solutions for OPF with renew-
able energy resources, there is no standard model and test framework 
across the literature yet. In other words, each existing study may pro-
pose a unique model to incorporate wind energy, unique test circuits, 
etc. Thus, it is difficult to have apple to apple comparison. For instance, 
many works do not consider wind power output as control/optimization 
variables, but consider it as negative load, which is a known information 
obtained from forecast [41,42]. The wind power forecast also varies 
greatly depending on methodologies. Wind power forecast has two 
major approaches in terms of output: point forecast and probabilistic 
forecast. Point forecasting gives a single future wind power output. On 
the contrary, probabilistic forecast gives a conditional distribution of 
future wind power output [42], so that system operators and traders can 
utilize a much broader set of information. The wind power distribution 
can be further represented as quantiles, interval forecasts, PDFs and 
scenarios generated by Monte Carlo simulation [20-22]. The main 
advantage of WOPF model in this work is that the wind output, as part of 
control variables, is derived from wind speed PDF to have its analytic 
expression as described in Appendix B, which not only takes forecast 
error into account but also requires much less computing power 
compared with Monte Carlo simulation method. 

5. Discussion and conclusion 

This paper summarized several categories by which PSO variants are 
developed and proposed a novel differential evolutionary PSO inte-
grated with orthogonal learning (OL). It has proved to be promising in 
the balance between exploration and exploitation. The DEEPSO-OL is 
improved from aspects of improving control parameters by self-evolving 
on CI and SI coefficients, searching mechanism with OL, perturbation 
mechanism by adding noise on global best, and population topology 
with stochastic star shape. To evaluate its performance on a real-world 
problem, OPF and WOPF are developed accordingly. In OPF, there are 
four objective functions tested and compared with other state-of-the-art 
evolutionary computation algorithms published in recent years. The 
proposed algorithm outperformed all other algorithms in less computing 
time, less objective values, less standard deviation (exception on Sce-
nario 4), and less function evaluations. 

Also, by running 30 simulations, statistical analysis and T test were 
conducted to show that the DEEPSO-OL has significantly improved the 
performance compared with the second-best algorithm, especially on 
complex solution domains. Parameter sensitivity analysis is presented 

via heatmap which vividly demonstrates that even using less population, 
sound results can be obtained. WOPF was developed such that network 
constraints were also considered and DEEPSO-OL proves its effective-
ness on the complex stochastic optimization problem by generating 
robust solutions in a reasonable time. Such a tool can be used to assess 
wind power integration and provide good insights for decision makers. 

The trend of evolutionary computation research is to solve real- 
world complex problems. For example, the proposed algorithm can be 
potentially used to solve complex supply chain management problems 
where optimal production plan, allocation of distribution centers, and 
vehicle routes are to be determined under network and supply-demand 
balance constraints. This is a very complicated NP hard problem. This 
work not only shows the importance of balancing exploration and 
exploitation but also provides improvement guidance from four aspects 
mentioned in introduction for researchers. Yet, this work does not intend 
to imply that the more aspects algorithm gets tuned simultaneously, the 
better performance it will achieve, because algorithm should be tuned 
case by case to fit for specific problems. Therefore, further investigation 
can be done into the individual contribution of these four aspects. In 
addition, for all evolutionary computation-based solutions, they suffer 
from non-consistent results of each run, and computational burden. 
Computational burden may be compensated by stronger computing 
power and/or parallel computing. Therefore, for future works, authors 
aim to improve the robustness of this algorithm and use a larger system 
with more control variables test. Moreover, researchers in this com-
munity can think of more practical applications where they are too hard, 
if not impossible, to be solved by traditional methods and do not require 
consistent solution repeatedly. 
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Appendix A. Optimal solution obtained by DEEPSO-OL for IEEE-30 system  

Control Variables Min Max Scenario 1 Scenario 2 Scenario 3 Scenario 4 

PG2 (MW)  20  80  48.7869  43.8497  80.0000  31.0681 
PG5 (MW)  15  50  21.3968  17.9695  50.0000  31.0547 
PG8 (MW)  10  35  21.1653  10.0000  35.0000  22.2462 
PG11 (MW)  10  30  11.9035  10.0000  30.0000  21.2139 
PG13 (MW)  12  40  12.0001  12.0000  40.0000  18.0070 
V1 (p.u)  0.95  1.10  1.0815  1.0999  1.0700  1.0700 
V2 (p.u)  0.95  1.10  1.0626  1.0797  1.0660  1.0318 
V5 (p.u)  0.95  1.10  1.0313  1.0477  1.0470  0.9754 
V8 (p.u)  0.95  1.10  1.0355  1.0509  1.0531  0.9844 
V11 (p.u)  0.95  1.10  1.0781  1.0977  1.0869  1.0894 
V13 (p.u)  0.95  1.10  1.0566  1.0593  1.0667  0.9557 
T4–12 (p.u)  0.90  1.10  1.0154  1.0544  1.0103  0.9653 

(continued on next page) 
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(continued ) 

Control Variables Min Max Scenario 1 Scenario 2 Scenario 3 Scenario 4 

T6–9 (p.u)  0.90  1.10  0.9618  0.9280  0.9631  0.9241 
T6–10 (p.u)  0.90  1.10  0.9806  0.9739  1.0017  0.9963 
T28–27 (p.u)  0.90  1.10  0.9707  0.9778  0.9760  0.9007 
Qc10 (MVar)  0  5  4.8912  0.9427  0.6809  2.6581 
Qc12 (MVar)  0  5  0.1059  0.1293  3.9682  1.6465 
Qc15 (MVar)  0  5  2.2623  4.0402  4.2123  2.3399 
Qc17 (MVar)  0  5  4.9342  4.9993  5.0000  1.6338 
Qc20 (MVar)  0  5  4.4215  3.8652  3.6695  1.8388 
Qc21 (MVar)  0  5  5.0000  4.9998  5.0000  2.3321 
Qc23 (MVar)  0  5  2.9204  2.7587  2.5803  3.8374 
Qc24 (MVar)  0  5  4.9777  4.9999  4.9998  0.5975 
Qc29 (MVar)  0  5  2.4285  2.2443  2.1775  3.1007 
Result      800.44  830.42  3.03  0.113  

Appendix B. Derivation of wind power PDF 

The PDF of wind speed is considered as Weibull distribution [24]: 

f (v) =
(

k
c

)(v
c

)k− 1(
e− (v/c)k

)
0 < v < ∞ (C1) 

where Weibull distribution can characterize the wind speed random variable by using different factor values k and c. Figs. C1 and C2 give the 
Weibull PDF functions for k = 1 and 2, respectively, with c = 10, 15, and 20.

Fig. C1. Weibull PDF with k = 1.  

The power output of wind farms is subject to randomness and can be derived through a transformation from wind speed. The relationship between 
wind turbine power and wind speed is expressed as [13]: 

ω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, v < vnorv > v0

ωv
(v − v0)

(vr − vn)
, vn ≤ v ≤ vr

ωr, vr ≤ v ≤ v0

(C2)  

where vr is the rated wind speed, and vn and v0 are cut-in and cut-out speeds, respectively. Given a Weibull distribution for a specific wind speed, 
Hetzer, Yu, and Bhattarai [24] provide a comprehensive guide for transforming the wind speed distribution into a wind power distribution:  
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Fig. C2. Weibull PDF with k = 2.  

ω = g(v)

g : R→RfW(ω) = fV(v)
⃒
⃒
⃒
⃒

d
dω

g− 1(ω)

⃒
⃒
⃒
⃒ (C3)  

where v and ω are respectively the wind speed and power random variables, gis the function that maps v to ω. 
Given g, the wind speed PDF fV(v) can be transformed to the wind power PDF fW(ω) by (C3). It is worth mentioning that the wind speed PDF fV(v)

can be obtained by historical meteorological data of a specific site, and we assume that it can be used for determining the expected values of wind 
speed and wind power. The expected wind power is considered as the predicted available power. 

Fig. C3 proves the PDF of wind power, which has been normalized to correspond to the given wind speed PDF with a shape factor k of 2 and scale 
factors c of 10, 15, and 20.

Fig. C3. Wind power PDF with k = 2 (discrete at 0 and 1; continuous between 0 and 1).  

Note that the PDF of the wind power output comprises both continuous random and discrete random variables (at 0 and 1). 

Appendix C. Acronyms  

ABC Artificial bee colony AC Acceleration coefficient 

AGSO Adaptive group search optimization CI cognitive influence 
DE Differential evolution DEEPSO Differential evolutionary evolution PSO 
DEEPSO-OL Differential evolutionary evolution PSO with orthogonal learning (OL) ED Economic dispatch 
EPSO Evolutionary PSO EV Electrical vehicle 

(continued on next page) 
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(continued ) 

ABC Artificial bee colony AC Acceleration coefficient 

FA Factor analysis GA Genetic algorithm 
MSCA Modified sine-cosine algorithm OA Orthogonal array 
OED Orthogonal experimental design OL Orthogonal learning 
OPF Optimal power flow PDF Probability density function 
PSO Particle swarm optimization SCA Sine-cosine algorithm 
SI social influence SO System operator 
StdPSO Standard PSO WOPF OPF incorporating wind power  

Appendix D. Detailed Implementation of DEEPSO-OL on OPF and WOPF 

The overall pseudo code is shown in Algorithm 4. Here authors expand the implementation with certain details hoping to provide good instruction 
for readers to code by themselves. Meanwhile, we’ve uploaded all the source code to Github repository: https://github.com/wbai123/matlab-code-of- 
evolutionary-algorithms-for-optimal-power-flow for reference. 

Algorithm. DEEPSO-OL   

For OPF, the control variables Xi =
[
PG,2⋯PG,i,VG,1⋯VG,j,T1⋯Ti,QC,1⋯QC,i

]
is described from (24). The overall structure can be divided into two 

parts. Line 4 – 22, is the DEEPSO, and line 23 – 25 is the DEEPSO-OL. Only one part is executed at each iteration based on the pre-defined OL 
probability p. Mutate weights in line 9 is based on (5). Line 16 is to compute the fitness values of Xnew

Ci (computed in line 12) and Xnew
i (computed in line 

8). The equation to evaluate solutions is based on (31). For WOPF, the main difference is that the control variables become Xi 
=
[
ω1⋯ωi, PG,2⋯PG,i,VG,1⋯VG,j,T1⋯Ti,QC,1⋯QC,i

]
and the computation of fitness value is based on (32). 
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