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Abstract—This study develops a novel variant of particle swarm optimization (PSO), which improves its balance of 

exploration and exploitation by modifying neighborhood topology, self-adaptive parameter strategies and deep search, namely 

differential evolutionary evolution PSO with orthogonal learning (OL), i.e., DEEPSO-OL in short. Evolutionary computing 

can explore the solution space efficiently because of its self-evolving attribute as iteration continues. The OL enhances its 

exploitation by focusing on deeper search for promising solutions. It utilizes the concept of orthogonal experimental design 

(OED) which predicts the best combination of control variables without exhaustive evaluation of all possible combinations. In 

addition, to avoid premature convergence in a local optimum, a stochastic star topology for particles is proposed. Such topology 

ensures just enough communication among the best performing particles, while encouraging them to explore other spaces. The 

efficacy of the algorithm is evaluated through real-world scenarios such as optimal power flow (OPF) and wind integrated 

OPF, which are hard to solve with classical mathematical methods. The proposed algorithm is run on a modified IEEE 30-bus 

test system and compared to the state-of-the-art evolutionary computing algorithms for a variety of cost objective functions 
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with high levels of non-linearity and non-convexity.  The DEEPSO-OL demonstrates its performance to generate more 

accurate feasible solutions and construct promising and efficient search method for real-world complex optimization problems.   

 

Index Terms—Particle swarm optimization (PSO), differential evolution (DE), orthogonal learning (OL), wind power, 

optimal power flow (OPF). 

1. INTRODUCTION 

Particle swarm optimization (PSO) has been widely applied in continuous complex optimization domain over 

the past 25 years, where classical mathematical programming is no longer practical since highly non-convex and 

non-linear properties [1]. Even though PSO is relatively efficient, simple, and easy-to-implement, it still has some 

obvious drawbacks, such as lack of robustness, weak balance in exploration and exploitation causing premature 

convergence, weak scalability, difficulties in tuning system parameters, etc. [2][4]. The well-known No Free 

Lunch Theorem has stated that no meta-heuristic algorithm can be superior to additional algorithms for all 

optimization problems universally [3]. Thus, many PSO variants are developed to tackle different problems. 

Design of those variants can be directed by modifying neighborhood topology, evolving system parameters, 

executing deep search, etc. Essentially, the objective is improving the balance between exploitation and 

exploration. Spanning from minor improvements to the integration of advanced innovative concepts, most 

variations have been developed manually, with developers experimenting with new designs based on their 

individual knowledge and expertise [4].  

The existing PSO variants can be summarized into four aspects with each PSO variant falling into only one or 

two aspects [4]: 1) variants on system parameters, such as self-adaptive parameters; 2) variants on the particle’s 

search mechanism to guide some deep search; 3) variants focused on adding perturbation to position or velocity 

vectors to escape from local minimal; 4) variants on population topology and size. It should be noted that our 

proposed differential evolutionary evolution PSO with orthogonal learning (DEEPSO-OL) algorithm, aims to 

enhance the standard PSO in all four aspects. 

Aspect 1 focuses on designing control parameters for the system, such as time-varying or adaptive/self-adaptive 

inertia and acceleration coefficients. Time-varying parameters are defined as functions dependent on specific 

iterations during algorithm runs whereas adaptive and self-adaptive parameters are functions dependent on the 

information during the running process to adjust their values. Because those control parameters influence the 

exploitation and exploration abilities of the algorithm heavily, there are numerous variations of parameter control 

strategies in the literature on PSO [15][16]. The weights in DEEPSO-OL undergo a mutation process where they 

evolve on a log distribution at each iteration. Such process improves the search behavior by balancing the 

exploration and exploitation because log distributions concentrate more values on the lower end and fewer on the 

higher end. In other words, more particles equipped with lower weights lead to a higher exploration rate while 

fewer particles with higher weights focus on exploiting the best solutions.  

Aspect 2 focuses on improving search mechanisms, namely, regulating the distribution of all potential positions 

of particles. Hybrid operations with genetic algorithm [17] and differential evolution [18] fall into this category. 

The proposed DEEPSO-OL integrates the orthogonal learning (OL) operator to search deeper near good solutions. 

The OL is a technique that leverages orthogonal arrays to sample and exploit the search space more efficiently 

instead of exhaustively evaluating all possible feasible solutions. 
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Aspect 3 focuses on different mechanisms to apply perturbations to position and velocity. It improves the 

diversity of solutions and avoids stagnation [19]. There are informed or random perturbations.  The informed 

mechanisms typically use the information of specific solution populations as the parameters (e.g., mean value) for 

a probability distribution, and then map random values are around them, while random perturbation simply 

introduces a stochastic value to perturbate a particle’s position or the velocity. The DEEPSO-OL uses the informed 

perturbation on its global best solution with a normal distribution. Such mechanism equips PSO with better chance 

of escaping from local minimal due to the randomness introduced in the search process.  

Aspect 4 includes the topology and the size of the population. Topology is crucial in achieving a balance 

between exploration and exploitation in search. The fully connected star, ring, and von Neumann topologies are 

widely recognized, and other topologies, such as hierarchical and small-world networks, have also been studied 

in PSO literature. Montes de Oca et al. [20] introduced a topology that reduces connectivity over time. Regarding 

population size, the number of particles changes dynamically in the iteration process according to some metrics 

[21]. In general, the population size will impact the tradeoff between solution quality and convergence speed. It 

is worth noting that increasing population size does not always guarantee better solution quality. In some complex 

cases where there are many local minima, the smaller population size outperforms the larger population size 

because of the prompt response of moving out of a local minimum. This paper introduces a stochastic star topology 

on particles, aiming to establish just about the right amount of information sharing and to avoid high computational 

burden.  The details of DEEPSO-OL are explained in Section II. 

In summary, this paper proposes a novel variant based on evolutionary PSO (EPSO). EPSO combines the idea 

of evolutionary computing and exploring capability of particles such that system parameters can self-evolve 

intelligently to adapt different problems [5][6]. Then, a differential evolution (DE) concept is adopted and 

hybridized into EPSO to become DEEPSO. The DE thrives on the idea of using macro-gradients to achieve 

progress in the search for the optimum. The DEEPSO uses the same concept, abandoning the idea of single particle 

memory, and replacing it with collective memory. In this work, it is further modified with a different neighborhood 

topology to explore the domain more efficiently. In addition, to enhance its exploitation, DEEPSO is integrated 

with the orthogonal learning (OL) strategy, to become DEEPSO-OL. With the assistance of orthogonal 

experimental design (OED), it generates promising solutions. OED is employed to identify the optimal 

combination levels through a relatively small number of experimental tests, thereby extracting more valuable 

information from past searches [7]-[9].  

To evaluate the performance of DEEPSO-OL, an optimal power flow (OPF) and its variant, OPF incorporating 

wind power (WOPF) are proposed. The OPF aims to optimize the voltage stability, power losses, generation cost, 

and/or other pertinent factors in a manner that satisfies the system constraints. Such non-linear, non-convex 

problem is a very good real-world problem to apply modern heuristic optimization methods to search for near-

optimum solution due to their efficiency [34][35]. Meanwhile, due to the increasing penetration of renewable 

energy sources, there is a great practical need to develop WOPF. Unlike traditional power sources, wind energy 

is highly uncertain and uncontrollable [10][11]. Since PSO, by nature, performs stochastic search in the solution 

domain, it is believed to have positive contribution to solving WOPF problem characterized by the uncertain wind 

power generation. The power output of wind farms fluctuates, and these fluctuations will have a large impact on 

the whole power system. Traditional deterministic optimization methods may not be able to account for these 

uncertainties and therefore result in suboptimal or even infeasible solutions. In contrast, evolutionary methods 
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embedded with stochastic search have been demonstrated to have the ability to counteract the uncertain nature in 

the optimization problem [36].  

Lezama et al. [37] have formulated a competition framework for real-world complex power distribution 

network optimization where an aggregator tries to maximize its profit by selling and buying energy in day-ahead 

local market under uncertainties due to renewable energies, electric vehicles (EVs), etc. The purpose of the 

competition is to demonstrate the validity of stochastic optimization methods such as PSO, GA, ABC, etc., in 

solving the problems with reliable and satisfactory solution and much less computing time compared to traditional 

mathematical programming. The stochastic behavior of the system is simulated by creating scenarios with Monto 

Carlo simulation which can be decomposed into deterministic models [12]. 

In this paper, the wind power incorporated economic dispatch (ED) model by Yu and Bhattarai [13] is extended 

to OPF problem. The objective of the ED is to minimize generation costs while meeting the overall demand, which 

can be formulated as a linear programming problem. The major difference between ED and OPF is that the 

inequalities for OPF contains not only generators’ output limits, but also the system parameters, such as 

transmission line capacity, bus voltage limits, transformer limits and reactive compensator limits. Instead of 

generating random varieties by inverse transform method and conducting Monte Carlo simulation, penalty cost is 

added to reflect the additional cost resulting from the uncertainty of wind power. Such mechanism avoids 

generating huge number of scenarios requiring high computational burden and provides penalty factors for 

decision maker to accurately model the wind power generating system. The cost resulting from uncertainty is 

comprised of two elements: surplus cost and wind power deficit cost. 

To the best of our knowledge, the application of DEEPSO-OL in the power system area has not been developed 

yet, which is one motivation for this work to develop practical and real-world benchmark test problems. The 

algorithm is tested on a modified IEEE 30-bus test system. Therefore, this work has two primary objectives: 1) 

develop a novel variant of PSO, named DEEPSO-OL; and 2) develop real-world benchmark problems and test 

the proposed DEEPSO-OL on these problems. The main contributions of this paper are summarized as follows:  

1) Proposed a novel PSO method based on orthogonal learning from the perspectives of evolving control 

parameters, deep search mechanism, perturbations on solutions and novel topology.   

2) Implemented the proposed algorithm to a real-world non-linear optimization problem, OPF, and comparative 

study and sensitivity analysis are conducted to draw more insights of the new variant. 

3) A wind energy conversion system model, WOPF, to harness wind energy efficiently is developed under the 

framework of the OPF problem. 

The rest of the paper is as follows: Section 2 illustrates proposed DEEPSO-OL. Section 3 describes OPF and 

WOPF problems as well as how DEEPSO-OL is implemented. Section 4 provides detailed case studies, numerical 

results tested on the IEEE 30-bus system and comparison with other techniques and evaluates optimally scheduled 

wind power based on various penalty and reserve cost coefficients. Finally, the conclusion part is given in Section 

5.  

2. PROPOSED METHODOLOGY 

In this section, to facilitate the understanding of DEEPSO-OL, standard PSO is introduced first, followed by 

evolutionary PSO, differential evolutionary PSO, and the OL. The DEEPSO-OL improves the search process by 

introducing adaptive weights, randomness on personal best, more efficient exploitation scheme, and stochastic 
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topology. These improvements enhance the balance between exploitation and exploration, avoid the local 

minimal, and simplify system parameter tuning which are the shortcomings of the standard PSO. 

2.1 Particle Swarm Optimization (PSO) 

Particle swarm optimization [1] is a stochastic search algorithm that was initially designed for continuous 

optimization problems. Many variants have also extended the abilities for discrete problems [40]. Each particle i 

repeatedly searches in the solution domain according to velocity V and position X (a feasible solution) update 

rules. The standard PSO (StdPSO) is described as follows: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑉𝑖

𝑛𝑒𝑤                                                                            (1) 

          𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0𝑉𝑖 + 𝑅1𝑤𝑖1(𝑏𝑖 − 𝑋𝑖) + 𝑅2𝑤𝑖2(𝑏𝑔 − 𝑋𝑖)                                                   (2) 

Equation (2) consists of three components which can be intuitively interpreted as following: the first term denotes 

the particle's inertia, which directs it to move along its previous direction, while the inertia weight 𝑤𝑖0 is used to 

regulate the impact of the previous velocity. The second term is the particle’s memory to control the movement, 

which is affected by the personal best, bi. The final term represents the collaboration of particles to control the 

movement, affected by global best, 𝑏𝑔, found by the whole swarm. The second and third terms represent the 

cognitive influence (CI) and social influence (SI) on the particle's movement respectively. The parameters 𝑤𝑖1 

and 𝑤𝑖2  are the weights known as the acceleration coefficients (ACs) to regulate the impact of CI and SI, 

respectively; 𝑅1 , 𝑅2  are random numbers generated from a uniform distribution in the range of [0,1], which 

introduce perturbation to help the algorithm avoid local minima. Variants on CI and SI to guide particles toward 

high-quality solutions is one of the main directions to obtain better performance. Position X will be assessed to 

obtain the fitness value by the objective function 𝑓(⋅) at each iteration.  

inertia

cooperation

memory

X

X
new

bi

bg
 

Fig. 1. Illustration of standard PSO. 

 

Fig. 1 displays how a new particle is influenced by inertia (moving in the same direction), memory (affected by 

the particle's past best position), and cooperation (attracted to the global best position). Many literatures have 

discussed the importance of balancing exploration and exploitation [2][14], which was the motivation to design 

innovative variants over the years. 
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2.2 Differential Evolution Evolutionary PSO (DEEPSO) 

Evolutionary PSO (EPSO) has a similar structure on velocity update compared with the StdPSO, but the 

parameters will undergo automatic evolution, guided by a constant mutation rate, during the search process. 

𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑏𝑖 − 𝑋𝑖) + 𝑤𝑖2

∗ (𝑏𝑔
∗ − 𝑋𝑖)                                                   (3) 

𝑏𝑔
∗ = 𝑏𝑔 + 𝑤𝑖3

∗ 𝑁(0,1)                                                                            (4) 

𝑤𝑖𝑘
∗ = 𝑤𝑖𝑘[𝑙𝑜𝑔 𝑁 (0,1)]𝜏                                                                        (5) 

where 𝑤𝑖𝑘
∗  (𝑤𝑖0

∗ ,𝑤𝑖1
∗ …) are weights and τ is a constant mutation rate. Note that in (5) weights are not constant as 

opposed to the StdPSO but are under the mutation process dependent on a log distribution with mean 0 and 

variance 1. This improvement lies in the design Aspect 1 mentioned above for control parameters. The global best 

𝑏𝑔
∗ is modified by adding a normally distributed (mean 0 and variance 1) random variable to the original 𝑏𝑔. Thus, 

EPSO is also guided by three components, inertia, perception (different from the StdPSO which consists of 

memory as the second component) and cooperation. Note that even the second term in Eq. (3) still uses particle’s 

personal best and yet this term is self-evolving because of the weight 𝑤𝑖1
∗ . In addition, cooperation term is attracted 

by the approximate global best rather than the real one, which can help the swarm escape local optima and explore 

more diverse regions of space. Such modification enhances the exploration ability to cover more possible solutions 

[22].   

Differential evolution (DE) is employed to generate a new solution, 𝑋𝑖, which combines the information of two 

random individual population (𝑋𝑟1, 𝑋𝑟2). This process supports the diversity of a population, thereby increasing 

the exploration in the solution domain. Miranda and Alves proposed the DEEPSO for the first time by combining 

the EPSO and DE [23]. DEEPSO was also successfully implemented to address voltage stability issue by Bai, 

Lee, and Eke [5]. Thus, the velocity update function is now defined as:  

𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑋𝑟1 − 𝑋𝑖) + 𝑤𝑖2

∗ (𝑏𝑔
∗ − 𝑋𝑖)                                                           (6) 

Comparing (6) with (3), the form of DEEPSO is more like EPSO. The only variation is to substitute the personal 

best,  𝑏𝑖 with 𝑋𝑟1 in the second term as illustrated in Fig. 2.  

 

inertia

(memory)
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cooperation
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bg
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Fig. 2. Illustration of DEEPSO. 
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Fig. 2 illustrates a flavor of DE, where the 𝑋𝑟1 information is added to the EPSO. Similarly, DEEPSO consists 

of inertia, perception, and cooperation terms.  

As mentioned above, there are certain communication structures among particles, namely particles 

neighborhood topology. Classical communication structure is the star shape where all individuals get the same 

opportunities to know about the information of global best 𝑏𝑔. Another alternative is ring shape where each 

particle only knows its two neighbors’ information as shown below in Fig. 3. 

 

Fig. 3. Star and ring topology (red is the global best). 

The conventional star configuration could result in premature convergence due to excessive communication 

that limits exploration of the search space, whereas the ring configuration runs the risk of leading the process 

towards a set of independent parallel searches due to insufficient information exchange. Therefore, in this paper, 

a stochastic star topology has been introduced to avoid traditional topologies’ drawbacks where a communication 

probability matrix P is set to allow certain particles to access the global best as shown below: 

𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑋𝑟1 − 𝑋𝑖) + 𝑤𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝑖)                                                    (7) 

where P is the communication probability matrix, which is a diagonal matrix with 0 or 1 to decide if 𝑋𝑖can access 

the approximate global best 𝑏𝑔
∗ information, as the last term in (7) is expanded as: 

[𝑤1,2
∗ 𝑤2,2

∗ 𝑤3,2
∗ ⋯ 𝑤𝑛,2

∗ ]

[
 
 
 
 
1 0 0 ⋯ 0
0 0 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0]

 
 
 
 

[
 
 
 
 
 
(𝑏𝑔

∗ − 𝑋1)

(𝑏𝑔
∗ − 𝑋2)

(𝑏𝑔
∗ − 𝑋3)

⋮
(𝑏𝑔

∗ − 𝑋𝑛)]
 
 
 
 
 

                                               (8) 

It is noted that the communication probability matrix P determines which (𝑏𝑔
∗ − 𝑋𝑖) term is multiplied by either 

one or zero, in other words, it determines which 𝑋𝑖  can access the approximate global best information. Algorithm 

1 illustrates a procedure for creating the communication matrix P: 

Algorithm 1: Create communication P matrix 

1.  Given a probability threshold x 

2.  for i = 1 to swarm size n 

3.       for k = 1 to n 

4.             if 𝑖 ≠ 𝑘 then 𝑃𝑖𝑘 = 0 

5.             else 𝑟 = 𝑟𝑎𝑛𝑑() 

6.                     if 𝑟 > 𝑥 , 𝑃𝑖𝑖 = 0 else 𝑃𝑖𝑖 = 1 end if 

7.             end if 

8.        end for 

9.  end for 
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It is important to introduce this communication probability matrix P to balance the exploration and exploitation 

because too much information from approximate global best 𝑏𝑔
∗ leans to exploitation in the solution domain. The 

impact of the various probability of exchanging information with neighbors is given in the sensitivity analysis 

under Section IV. In this work, rule (7) is further modified as following to gain a better performance by our 

empirical analysis:  

{
𝑉𝑖

𝑛𝑒𝑤 = 𝑤𝑖0
∗ 𝑉𝑖 + 𝑤𝑖1

∗ (𝑋𝑟1 − 𝑋𝑖) + 𝑤𝑖2
∗ 𝑷(𝑏𝑔

∗ − 𝑋𝑖)

𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑋𝑖 − 𝑋𝑟1) + 𝑤𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝑖)

}                                                    (9) 

If the fitness value of the 𝑋𝑟1 is less than that of 𝑋𝑖 , e.g., 𝐹(𝑋𝑟1) < 𝐹(𝑋𝑖), use the second equation in (9), 

otherwise, employ the first equation. Algorithm 2 gives the pseudocode of DEEPSO. Note that line 8 and 9 create 

new copies of current V and X using the mutated weights in line 6. From line 15 – 17, final population and other 

parameters are set after comparing the current population with the copied population. 

 

Algorithm 2: DEEPSO 

1.  Initialize swarm (parameters, topology, population) 

2.  Repeat iteration t 

3.       for i = 1 to swarm size n 

4.             𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑋𝑟1 − 𝑋𝑖) + 𝑤𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝑖) – Equation (7)      

5.             𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑉𝑖

𝑛𝑒𝑤 

6.             Mutate weights (𝑤𝑖0
∗ ,𝑤𝑖1

∗ ,𝑤𝑖2
∗ ) 

7.             /*replicate velocity and position copies using new w */ 

8.             𝑉𝐶𝑖
𝑛𝑒𝑤 = 𝑤𝑐𝑖0

∗ 𝑉𝐶𝑖 + 𝑤𝑐𝑖1
∗ (𝑋𝐶𝑟1 − 𝑋𝐶𝑖) + 𝑤𝑐𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝐶𝑖) – Equation (7)  

9.             𝑋𝐶𝑖
𝑛𝑒𝑤 = 𝑋𝐶𝑖 + 𝑉𝐶𝑖

𝑛𝑒𝑤 

10.       end for 

11.       Enforce  𝑋𝑖
𝑛𝑒𝑤, 𝑉𝑖

𝑛𝑒𝑤, 𝑋𝐶𝑖
𝑛𝑒𝑤, 𝑉𝐶𝑖

𝑛𝑒𝑤 within feasible limits 

12.       for i = 1 to swarm size n 

13.             Compute 𝑓(𝑋𝐶𝑖
𝑛𝑒𝑤)  and 𝑓(𝑋𝑖

𝑛𝑒𝑤) /*evaluate solutions*/ 

14.             /*create new solution to replace the current one*/ 

15.             if  𝑓(𝑋𝐶𝑖
𝑛𝑒𝑤) < 𝑓(𝑋𝑖

𝑛𝑒𝑤) 

16.                 𝑓(𝑋𝑖
𝑛𝑒𝑤) = 𝑓(𝑋𝐶𝑖

𝑛𝑒𝑤), 𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝐶𝑖

𝑛𝑒𝑤, 𝑉𝑖
𝑛𝑒𝑤 = 𝑉𝐶𝑖

𝑛𝑒𝑤, 𝑤𝑖0
∗ = 𝑤𝑐𝑖0

∗ , 𝑤𝑖1
∗ = 𝑤𝑐𝑖1

∗ , 𝑤𝑖2
∗ = 𝑤𝑐𝑖2

∗  

17.             end if 

18.       end for 

19.  until termination criterion is met 

20.  return global best   

 

2.3 Orthogonal Learning 

Orthogonal learning (OL) is the process based on orthogonal experimental design (OED) to get the best 

candidate with fewer combinations. OED is an experimental design used to study the effect of several factors 

simultaneously and the best combination of factor levels can be found in several tests. Table I gives an example 

of finding the best combination of ingredients to make bread. 
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TABLE I BEST BREAD EXPERIMENT  

Factors 

 

Levels 

A 

Flour (lbs) 

B 

Yeast (oz) 

C 

Salt (oz) 

D 

Water(oz) 

1 L1 5 0.5 0.3 4 

2 L2 4 0.6 0.4 3 

 

In this experiment, there are four factors (optimization variables): flour (A), yeast (B), salt (C) and water (D) 

to make the bread. Each factor consists of two levels, e.g., the flour can be 5 or 4 lbs, salt can be 0.3 or 0.4 lbs, 

etc. Thus, there are total of 24 = 16 combinations. Through the implementation of OL, it is possible to accurately 

predict the optimal combination by testing significantly fewer representative combinations, therefore OED can 

reduce the total testing cost. Those representative combinations are chosen according to the orthogonal array 

(OA). Details of OA and factor analysis (FA) are introduced as follows: 

1) Orthogonal Array: firstly, ‘LN(sd)’ is used to represent an array with s levels (possible values) in each 

factor under d factors (optimization variables). Then, L and N denote an array and the total combination numbers, 

respectively [7]-[9]. For example, L8(24) array given below contains 4 factors (optimization variables), 2 levels 

(possible values, 1 or 2) per factor, and 8 combinations.  

4

8

1 1 1 1

1 1 1 2

1 2 2 1

1 2 2 2
(2 )

2 1 2 1

2 1 2 2

2 2 1 1

2 2 1 2

L

 
 
 
 
 
 =
 
 
 
 
 
  

                                                                               (10) 

The detailed definition and formulation of OA can be found in [32]. The idea is that instead of searching 24 = 

16 combinations exhaustively, OA only use 8 of them to design an experiment to predict the best combination. 

OA is a predefined table for the OED method to work on, which is the fundamentals for defining representative 

combinations. Table II presents the eight experiments that are specified by L8(24). For example, the first row in 

(10) is [1 1 1 1], indicating that factors A (flour), B (yeast), C (salt), and D (water) are all set to the first levels 

(5lbs, 0.5oz, 0.3oz, 4oz) from Table I. The last column in Table II represents the evaluation of the experiments 

for each combination of ingredients using a fitness function that determines the level of deliciousness. The fitness 

function here is not a particular mathematical formula, but a professional judge who would rate combination of 

ingredients by outputting a fitness value based on his/her judgment. Higher value means the bread is more 

delicious. 

TABLE II BEST COMBINATION LEVELS BY OED 

Comb. A: Flour B: Yeast C: Salt D: Water Fitness value 

Cb1 (1) 5 (1) 0.5 (1) 0.3 (1) 4 f1 = 31 

Cb2 (1) 5 (1) 0.5 (1) 0.3 (2) 3 f2 = 54 

Cb3 (1) 5 (2) 0.6 (2) 0.4 (1) 4 f3 = 38 

Cb4 (1) 5 (2) 0.6 (2) 0.4 (2) 3 f4 = 53 

Cb5 (2) 4 (1) 0.5 (2) 0.4 (1) 4 f5 = 49 
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Cb6 (2) 4 (1) 0.5 (2) 0.4 (2) 3 f6 = 42 

Cb7 (2) 4 (2) 0.6 (1) 0.3 (1) 4 f7 = 57 

Cb8 (2) 4 (2) 0.6 (1) 0.3 (2) 3 f8 = 62 

levels  Factor Analysis 

L1 (f1+f2+f3+f4)/4=44 (f1+f2+f5+f6)/4=44 (f1+f2+f7+f8)/4=51 (f1+f3+f5+f7)/4=43.75 

L2 (f5+f6+f7+f8)/4=52.5 (f3+f4+f7+f8)/4=52.5 (f3+f4+f5+f6)/4=45.5 (f5+f6+f7+f8)/4=52.75 

Results A2 B2 C1 D2 

 

2) Factor Analysis: Factor analysis (FA) involves determining the optimal combination of levels (potential 

values). Based on the experimental results from OA with N cases, FA is performed to identify the optimal 

combination. Table II illustrates the FA process, with further details provided in [9]. As shown in Table II, the 

optimal combination determined by FA is (A2, B2, C1, and D2). It happens that the corresponding combination 

(4lb, 0.6oz, 0.3oz and 3oz) is Cb8 in Table II. However, it is quite common to predict the best combination that 

may NOT appear in the original test table. Thus, as OL is implemented in the DEEPSO algorithm, the deeper 

search for the best candidate solution can be efficiently conducted by predicting the best combination of control 

variables as a solution vector. Constructing the best candidate is summarized in Algorithm 3: 

 

Algorithm 3: Construct candidate solution by OL 

1.  Generate a transmission vector by (11) 

2.  Choose a solution vector randomly. 

3.  /*The following steps are to mix and by making use of OL to construct a solution*/ 

4.  Generate a 2-level OA LM(2D), with M = 2⌈log
2
(D+1)⌉. (‘⌈  ⌉’ represents the ceiling bracket, which indicates 

rounding a number to the closest integer towards ∞). D is the number of factors/optimization variables. 

5.  Obtain M test solutions Zm (1 ≤ m ≤ M) with the corresponding value of Tk and Xi according to OA, where M 

denotes for the total number of combinations by the OA. 

6.  Evaluate the fitness of each solution, f(Zm), (1 ≤ m ≤ M), and record the best solution Zb in accordance with the 

fitness values. 

7.  Obtain the best solution Zp and evaluate the f(Zp) by FA. 

8.  Adopt Zp or Zb, whichever has better fitness value, as the new candidate solution vector Xs 

 

2.4 DEEPSO with Orthogonal Learning (DEEPSO-OL) 

From the above discussion and preparation, the following DEEPSO-OL is now proposed. To construct a 

candidate solution by OL, a transmission solution 𝑇𝑘 is introduced: 

𝑇𝑘 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑏𝑔 − 𝑋𝑖) 

𝑘 ≠ 𝑖 ∈ [1, 𝑛]                                                        (11) 

where 𝑏𝑔 is the global best; k and i are different particle indices in the swarm. The combination of information 

from 𝑇𝑘 and 𝑋𝑖 results in an improved candidate solution 𝑋𝑠. Algorithm 4 outlines the framework of the DEEPSO-

OL algorithm:  

 

Algorithm 4: DEEPSO-OL 

1.  Initialize swarm (parameters, topology, population) 

2.  Define a OL threshold p 

3.  Repeat iteration t 

4.  if rand () > p 

5.       /*use DEEPSO algorithm*/ 
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6.       for i = 1 to swarm size n 

7.             𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑋𝑟1 − 𝑋𝑖) + 𝑤𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝑖) – Equation (7)           

8.             𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑉𝑖

𝑛𝑒𝑤 

9.             Mutate weights (𝑤𝑖0
∗ ,𝑤𝑖1

∗ ,𝑤𝑖2
∗ ) 

10.             /*replicate velocity and position copies using new w*/ 

11.             𝑉𝐶𝑖
𝑛𝑒𝑤 = 𝑤𝑐𝑖0

∗ 𝑉𝐶𝑖 + 𝑤𝑐𝑖1
∗ (𝑋𝐶𝑟1 − 𝑋𝐶𝑖) + 𝑤𝑐𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝐶𝑖) – Equation (7) 

12.             𝑋𝐶𝑖
𝑛𝑒𝑤 = 𝑋𝐶𝑖 + 𝑉𝐶𝑖

𝑛𝑒𝑤 

13.     end for 

14.     Enforce 𝑋𝑖
𝑛𝑒𝑤,𝑉𝑖

𝑛𝑒𝑤,𝑋𝐶𝑖
𝑛𝑒𝑤,𝑉𝐶𝑖

𝑛𝑒𝑤 within feasible limits 

15.     for i = 1 to swarm size n 

16.           compute 𝑓(𝑋𝐶𝑖
𝑛𝑒𝑤) and 𝑓(𝑋𝑖

𝑛𝑒𝑤) /*evaluate solutions*/ 

17.           /*create new solution to replace the current one*/ 

18.           if 𝑓(𝑋𝐶𝑖
𝑛𝑒𝑤) < 𝑓(𝑋𝑖

𝑛𝑒𝑤) 

19.              𝑓(𝑋𝑖
𝑛𝑒𝑤) = 𝑓(𝑋𝐶𝑖

𝑛𝑒𝑤),  𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝐶𝑖

𝑛𝑒𝑤, 𝑉𝑖
𝑛𝑒𝑤 = 𝑉𝐶𝑖

𝑛𝑒𝑤, 𝑤𝑖0
∗ = 𝑤𝑐𝑖0

∗ ,𝑤𝑖1
∗ = 𝑤𝑐𝑖1

∗ ,𝑤𝑖2
∗ = 𝑤𝑐𝑖2

∗  

20.            end if 

21.       end for 

22.  else 

23.        /*construct OL based on DEEPSO*/ 

24.        Construct candidate solution by OL by Algorithm 3 

25.  end if 

26.  until termination criterion is met 

27.  return global best   

 

The overall structure can be divided into two parts. Line 4 – 22, is the DEEPSO, and line 23 – 25 is the 

DEEPSO-OL. Note that we introduce a pre-defined OL probability p in line 2 to control the process such that 

either DEEPSO or DEEPSO-OL is executed at each iteration to reduce computation cost. Therefore, the 

complexity of the algorithm mainly lies on function evaluation at line 16. Depending on probability p, the minimal 

total function evaluations is between 2×n×iter (fully DEEPSO) and 2×n×M×iter (fully DEEPSO-OL), where n is 

the number of the population, iter is the iteration numbers, and M is the number of rows in constructed OA. In 

addition, M depends on the dimension of optimization variables. It is noticed that if we decide to use full DEEPSO-

OL, the computation burden is high, therefore, to find a good probability threshold p is crucial when scaling the 

algorithm. The way to evaluate solutions (𝑓(𝑋𝑖
𝑛𝑒𝑤)) in Algorithm 4 is done with the help of AC Power flow, 

specifically, solved by Newton-Raphson method [5]. Essentially, control variables as solutions are fed into the AC 

Power flow solver, then high-dimensional nonlinear functions are calculated to obtain state variables. Finally, 

objective functions, dependent on control and/or state variables, are constructed and calculated to evaluate the 

fitness.  

2.5 Exploration and Exploitation Balance Analysis 

To illustrate the exploration and exploitation properties of algorithms, we adopted the following equations 

and algorithm from [42] to quantify the balance performance. The results are presented in Section 4. To 

calculate the increase and decrease in the distance among search agents, a diversity measurement known as the 

dimension-wise diversity measurement is calculated by Equations 12 - 14 in each iteration. The diversity 

measurement will be used to calculate the exploration and exploitation in each iteration. 

𝐷𝐼𝑉𝑗 =
1

𝑁
∑ |𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑗) − 𝑋𝑖

𝑗
|𝑁

𝑖=1                                                        (12) 

𝐷𝐼𝑉 =
1

𝐷
∑ 𝐷𝐼𝑉𝑗

𝐷
𝑗=1                                                                    (13) 
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𝐷𝐼𝑉𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝐷𝐼𝑉1, 𝐷𝐼𝑉2, ⋯ , 𝐷𝐼𝑉𝑀𝑎𝑥𝑖𝑡𝑒𝑟}                                          (14) 

where median (Xj) is the median of jth dimension in the whole population. 𝑋𝑖
𝑗
 is the jth dimension of particle i; N is 

the total number of particles in the population and D is total number of the dimension for each particle. Algorithm 

5 presents the pseudo-code for calculating diversity. 

Algorithm 5: DIVERSITY CALCULATION 

1.  Input: population X, N, D 

2.  Repeat iteration t 

3.  while iter < Maxiter 

4.        for i = 1 to D 

5.              for j = 1 to N 

6.                   Calculate the diversity in each dimension DIVj, by (12); 

7.              end for 

8.             Calculate the diversity of the entire population DIV by (13); 

9.        end for 

10.        iter = iter + 1; 

11.  end while 

12.  Calculate the highest diversity value DIVmax by (14); 

13.  return DIV, DIVmax 

 

The exploration is calculated from (15), which is the ratio between the diversity in each iteration and the 

maximum attainable diversity. On the other hand, exploitation from (16) is just the complementary percentage to 

exploration, which reflects the difference between the maximum diversity and the current diversity of an iteration. 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛% =
𝐷𝐼𝑉

𝐷𝐼𝑉𝑚𝑎𝑥
× 100                                                           (15) 

 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛% =
|𝐷𝐼𝑉𝑚𝑎𝑥 −𝐷𝐼𝑉|

𝐷𝐼𝑉𝑚𝑎𝑥
× 100                                                 (16) 

 

3. FORMULATION OF PROBLEMS 

In this section, the OPF and WOPF problems are developed and then the process of applying DEEPSO-OL is 

described. 

3.1 OPF and WOPF 

The goal of conventional OPF is to optimize a power system's objective function by selecting control variable 

settings that satisfy network constraints and operational requirements. The mathematical formulation of this 

objective is: 

𝑚𝑖𝑛      𝑓(𝑥, 𝑢)                                                                                           (17) 

𝑆.T.     𝑔(𝑥, 𝑢) = 0                                                                                     (18) 

    ℎ(𝑥, 𝑢) ≤ 0                                                                                     (19) 

where the control variable vector u comprises generator bus voltage, transformer setpoint, generator real power, 

and shunt compensator at specified buses. The state variable vector x encompasses real power at the slack bus, 

reactive power at the generator bus, voltage at the load bus, and transmission line capacity. Note that some of the 

state variables are used to construct objective functions. The set of equality constraints g includes power flow 

balance equations at each node, while the set of inequality constraints h comprises limits on generator real and 

reactive power, transformer setpoint, and shunt capacitor.  
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Usually, two distinct objective functions for fuel cost are considered, namely quadratic cost functions with and 

without valve point loading in equations (20) and (21), respectively. 

∑ 𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2𝑁𝐺

𝑖=1                                                                              (20) 

∑ 𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2𝑁𝐺

𝑖=1 + |𝑑𝑖 𝑠𝑖𝑛( 𝑒𝑖(𝑃𝐺𝑖,𝑚𝑖𝑛 − 𝑃𝐺𝑖))|                                                (21) 

where PGi denotes the active power on the i-th unit. Fig. 4 illustrates the impact of valve point loading on a 

quadratic cost function. In a power plant, steam is regulated by valves to enter the turbine through separate nozzle 

groups. Optimal efficiency is attained when each nozzle group operates at full output [24]. To achieve the 

maximum possible efficiency, valves must open in sequence, leading to a fluctuating cost curve as depicted in 

Fig. 4.  

 

The third objective function minimizes the total power loss as current flows along the transmission lines. It is 

defined as the total power loss: 

∑
𝑟𝑘

𝑟𝑘
2+𝑥𝑘

2

𝑁𝑙
𝑘=1 [𝑉𝑖

2 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗 𝑐𝑜𝑠( 𝛿𝑖 − 𝛿𝑗)]                                                       (22) 

The fourth objective function minimizes the L-index which indicates the system’s voltage stability. This index 

denotes the proximity of the system to collapse. The L-index varies between 0 (no load condition) and 1 (voltage 

collapse), and the bus with the highest L-index is the most susceptible bus. In other words, each bus has its L-

index, and the one with the largest value needs to be minimized. The L-index for j-th bus is given as:  

𝐿𝑗 = |1 − ∑ 𝐹𝑗𝑖
𝑉𝑖

𝑉𝑗
∠(𝜃𝑗𝑖 + 𝛿𝑖 − 𝛿𝑗)

𝑁𝑔

𝑖=1
|                                                            (23)    

            

The control variables for OPF consist of the real power output on all generating buses except the slack bus, the 

voltages at all generating buses, the transformer taps, and the shunt capacitors, which are denoted as:  

[𝑃𝐺,2 ⋯𝑃𝐺,𝑖 , 𝑉𝐺,1 ⋯𝑉𝐺,𝑗 , 𝑇1 ⋯𝑇𝑖 , 𝑄𝐶,1 ⋯𝑄𝐶,𝑖]                                                     (24) 

The equality constraints g in equation (18) are the AC power flow balance equations at each bus, which state that 

the power flowing into a specific bus equals the power flowing out it. This is defined as: 

𝑃𝑖 = 𝑉𝑖 ∑𝑉𝑗𝑌𝑖𝑗 𝑐𝑜𝑠( 𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑁

𝑗=1

 

𝑄𝑖 = 𝑉𝑖 ∑ 𝑉𝑗𝑌𝑖𝑗 𝑠𝑖𝑛( 𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)
𝑁
𝑗=1      ∀𝑖, ∀𝑗                                                  (25) 

Power(MW)

$/MW

Valve 1

Valve 2

Valve 3

 

Fig. 4. Effect of valve point loading on a quadratic cost function. 
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The inequality constraints h (19) encompasses security constraints, transformer tap positions, generator limits, 

shunt capacitor limitations, and voltage and transmission line flow restrictions for the load buses. 

Generator limits: 

𝑃𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖,𝑚𝑎𝑥  

𝑄𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖,𝑚𝑎𝑥  

𝑉𝐺𝑖,𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖,𝑚𝑎𝑥      𝑖 ∈ 𝑁𝐺                                                                 (26) 

Tap positions of transformers: 

𝑇𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑇𝑃𝑖 ≤ 𝑇𝑃𝑖,𝑚𝑎𝑥      𝑖 ∈ 𝑁𝑇                                                                 (27)  

Shunt capacitors constraints: 

𝑄𝑐𝑖,𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖,𝑚𝑎𝑥      𝑖 ∈ 𝑁𝐶                                                                 (28) 

Security constraints on the bus voltage and transmission line flows: 

𝑉𝐿𝑖,𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖,𝑚𝑎𝑥      𝑖 ∈ 𝑁𝑝𝑞 

𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖,𝑚𝑎𝑥                  𝑖 ∈ 𝑁𝑙                                                                (29)     

where the fuel cost coefficients of the i-th unit are represented by ai, bi, ci, di, ei; PGi, which denotes the real power 

of the i-th unit; Vi symbolizes the voltage magnitude at bus i; rk and xk  indicate the resistance and reactance of the 

transmission line k that connects bus i and j; Vi, Vj, δi and δj, which represent the voltages and angles at bus i and 

j, respectively; ω is the weighting factor; Yij and θij are the Y-bus admittance matrix elements between bus i and j; 

Npq denotes the number of PQ buses; Nl represents the total number of transmission lines; The variables in this 

equation include: NG represents the number of generators; NT denotes the number of tap-changing transformers; 

PGi,min/PGi,max, QGi,min/QGi,max and VGi,min/VGi,max, which signify the minimum/maximum real power, reactive power, 

and voltage limits of generating unit i; TPi,min/TPi,max and Qci,min/Qci,max represent the limits for transformers and 

shunt capacitors, respectively; VLi,min and VLi,max, which indicate the limits of load bus voltage; and SLi,max denotes 

the maximum line capacity of transmission line i.  

The problem considers the real power generation of PV buses, voltage at all generator buses, transformer tap 

settings, and shunt compensators as control variables, which are initially assigned random values within the 

feasible domain. A penalty function is introduced to ensure that the dependent/state variables are also within the 

feasible domain, and to handle the inequality constraints. Specifically, the penalty function is defined and utilized 

as follows. 

𝑃𝑒𝑛(𝑥𝑖) = {
(𝑥𝑖 − 𝑥𝑖,𝑚𝑎𝑥 )2

(𝑥𝑖,𝑚𝑖𝑛 − 𝑥𝑖)
2

0

}

if 𝑥𝑖 > 𝑥𝑖,𝑚𝑎𝑥

if 𝑥𝑖 < 𝑥𝑖,𝑚𝑖𝑛

            if 𝑥𝑖,𝑚𝑎𝑥 ≤ 𝑥𝑖 ≤ 𝑥𝑖,𝑚𝑎𝑥

                                        (30) 

where p(xi) indicates that the penalty function of dependent variable xi at bus i. The penalty cost increases 

quadratically when the dependent variables exceed their respective limits and zero, otherwise. Therefore, the 

augmented objective function is described by adding the penalty function for the slack bus, reactive power 

generation, PQ bus voltage, and transmission line capacity as follows: 
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𝐹 = 𝑓 + 𝐶𝑝𝑃𝑒𝑛(𝑃𝐺1) + 𝐶𝑞 ∑ 𝑃𝑒𝑛(𝑄𝐺𝑖)
𝑁𝐺
𝑖=1 + 𝐶𝑣 ∑ 𝑃𝑒𝑛(𝑉𝐿𝑖)

𝑁𝑝𝑞

𝑖=1
+ 𝐶𝑠 ∑ 𝑃𝑒𝑛(𝑆𝐿𝑖)

𝑁𝑙
𝑖=1                           (31)                                        

where f is the original cost function (17), Cp, Cq, Cv and Cs are normally large values and they represent penalty 

factors for the real power generation of the slack bus, reactive power output of the generator buses, PQ bus voltage, 

and transmission line capacity, respectively. Obviously, if variables violate inequality limits, their corresponding 

cost function value are to be penalized to a large value, then the solution is more likely to be abandoned. 

For those who are not in power systems background, readers can simply consider the objective functions as 

the evaluation functions where the outputs are the fitness values that justify the quality of input position vectors 

in DEEPSO-OL.  

 

3.2 OPF Incorporating Wind Power (WOPF) 

The essence of WOPF is to optimize the objective function (minimal loss, cost, stable voltage profile, etc.) 

when wind farms are connected at nodes in a power system grid. It raises another difficult question for system 

operators to operate grid effectively and reliably, because wind power is an intermittent source with uncontrollable 

nature. A common approach to tackle the stochastic behavior of the wind is to create scenarios and each scenario 

is considered as deterministic programming by Monte Carlo simulation [12]. Yet such an approach requires a lot 

of computations. However, this paper considers wind power uncertainty as a random variable and introduces an 

additional penalty cost in the unknown future of the wind power. This section incorporates wind power generators 

into the classical OPF problems to formulate WOPF. 

The model was designed from the viewpoint of system operators (SOs). It is common that the SOs own assets 

such as conventional plants and/or wind farms. However, this paper assumes the SOs do not own any assets but 

merely manage power in the market. Since wind power is uncertain, there will be overestimation or 

underestimation compared to the power committed for next day. The overestimation (reserve cost) is when the 

actual wind power generation is short of the scheduled reference estimated, in which case, reserve power will be 

purchased from other sources to meet the deficiency, and otherwise load will be shed. Those activities lead to 

incremental costs for the SOs. When the actual wind power generation exceeds the expected planned reference 

generation, an underestimation (penalty cost) occurs, meaning that the SO has already purchased additional 

electricity that would not have been purchased from the wind farm, but must handle the actual remaining wind 

power. It is note that if SOs own wind farms, the cost of underestimating penalty will not exist. SOs usually sell 

additional wind power to adjacent power grids through re-dispatching. If none of the above methods can be 

achieved, excess energy must be released through a pseudo load resistor. In summary, these activities can be 

modeled by overestimating and underestimating the penalty cost function, and increase to power generation costs 

while supporting load demand and adhering to system constraints, as shown below:  

𝐹𝑡𝑜𝑡𝑎𝑙 = ∑𝑓𝑖(𝑃𝑖)

𝑀

𝑖

+ ∑𝑓𝜔,𝑖(𝜔𝑖)

𝑁

𝑖

+ ∑𝑓𝑝,𝜔,𝑖(𝑊𝑖,𝑎𝑣 − 𝜔𝑖)

𝑁

𝑖

+ ∑𝑓𝑟,𝜔,𝑖(𝜔𝑖 − 𝑊𝑖,𝑎𝑣)

𝑁

𝑖

 

0 ≤ 𝜔𝑖 ≤ 𝜔𝑟,𝑖            (32) 

where Ftotal is the objective function for WOPF; there are M thermal plants, and N wind farms; 𝜔𝑖 and 𝜔𝑟,𝑖 are the 

scheduled wind power and rated power of the i-th wind generator, respectively; 𝑊𝑖,𝑎𝑣 is a random variable with 
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probabilities varying with a Weibull probability density function (PDF) with values 0 ≤ 𝑊𝑖,𝑎𝑣 ≤ 𝜔𝑟,𝑖 . The 

objective function includes four aspects: 

1) The first term represents fuel cost for thermal plants defined in (20) and (21).  

2) The second term represents direct cost of wind plants, in which 𝑓𝜔,𝑖
(⋅)is the cost function depending on 𝜔𝑖. 

Here, Assume a value of zero for the sake of simplicity. 

3) The third term represents the penalty for underestimating wind power, where 𝑓𝑝,𝜔,𝑖
(⋅)is the penalty cost 

function depending on  𝑊𝑖,𝑎𝑣 and 𝜔𝑖. 

4) The fourth term represents the penalty for overestimating wind power, where 𝑓𝑟,𝜔,𝑖
(⋅)is the cost function for 

reserve cost. The derivation of those penalty functions is presented in the following.  

 

In summary, the control vector u of WOPF consists of scheduled wind power 𝜔𝑖, power generation at PV bus 

𝑃𝐺,𝑖, voltage at generator buses 𝑉𝐺,𝑖, transformer taps 𝑇𝑖, and shunt capacitors 𝑄𝐶,𝑖, which is expressed as: 

[𝜔1 ⋯𝜔𝑖 , 𝑃𝐺,2 ⋯𝑃𝐺,𝑖 , 𝑉𝐺,1 ⋯𝑉𝐺,𝑗 , 𝑇1 ⋯𝑇𝑖 , 𝑄𝐶,1 ⋯𝑄𝐶,𝑖]                                                 (33) 

The equality and inequality functions will remain unchanged except for the inclusion of an additional constraint 

for wind power, 0 ≤ 𝜔𝑖 ≤ 𝜔𝑟,𝑖.  

It is assumed that the underestimation penalty cost and the overestimation reserve cost have linear relationships 

with the gap between the actual and scheduled wind generation [13]. Then the penalty and reserve cost functions, 

respectively, can be calculated as: 

𝑓𝑝,𝜔,𝑖(𝑊𝑖,𝑎𝑣 − 𝜔𝑖) = 𝑘𝑝,𝑖(𝑊𝑖,𝑎𝑣 − 𝜔𝑖) = 𝑘𝑝,𝑖 ∫ (𝜔 − 𝜔𝑖)𝑓𝑊(𝜔)𝑑𝜔
𝜔𝑟,𝑖

𝜔𝑖
                                    (34) 

      𝑓𝑟,𝜔,𝑖(𝑊𝑖,𝑎𝑣 − 𝜔𝑖) = 𝑘𝑟,𝑖(𝜔𝑖 − 𝑊𝑖,𝑎𝑣) = 𝑘𝑟,𝑖 ∫ (𝜔𝑖 − 𝜔)𝑓𝑊(𝜔)𝑑𝜔
𝜔𝑖

0
                                      (35) 

where 𝑘𝑝,𝑖 and 𝑘𝑟,𝑖 are the cost coefficients for penalty and reserve, respectively, and 𝑓𝑊(𝜔) is the PDF of wind 

power. Note that the unit of cost coefficients is ‘$/h•MW’.  

To assess both the reserve and penalty costs numerically, the PDF for the wind power output needs to be 

known. In general, the PDF of wind speed is following Weibull distribution, but to calculate the cost functions in 

WOPF, the wind power PDF 𝑓𝑊(𝜔) is derived from wind speed PDF, which is presented in Appendix B.  

The wind integrated model developed is implemented in the IEEE 30-bus system, where generators at bus 2 

and 5 are replaced by wind power generators to conduct numerical assessment of the WOPF, as illustrated in Fig. 

5. Details of this case study will be described in Section IV.  Jo
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4 CASE STUDIES 

The DEEPSO-OL has been implemented in a modified IEEE 30-bus system to demonstrate its performance. 

Comparisons are made with other modern heuristics, and sensitivity analysis as well as statistical analysis are 

performed.  The computer used for simulation work has a 2.4 GHz Intel core i9 Processor and 64 GB RAM. The 

power flow was computed by the MATPOWER package [25]. Two cases will be studied, Case 1 for OPF and 

Case 2 for WOPF. 

 

4.1 Case 1: OPF on IEEE 30-bus system 

Case 1 is a standard OPF problem which consists of four scenarios corresponding to four objective functions 

denoted in (20) - (23). The IEEE 30-bus system data, control variables, and cost coefficients can be found in [26]. 

Lines 4-12, 6-9, 6-10, and 28-27 are equipped with tap-changing transformers to adjust voltage, and buses (10, 

12, 15, 17, 20, 21, 23, 24 and 29) are installed with shunt capacitors to support reactive power. The system operates 

on a 100 MVA base and has an active power demand of 2.834 p.u. and a reactive power demand of 1.262 p.u. 

Further details are provided in Table III. 

TABLE III IEEE 30-BUS SYSTEM CHARACTERISTICS 

 

Variables 
 

Values Details 

Buses 30 Ref [27] 

Branches 41 Ref [27] 

Generators 6 Bus 1, 2, 5, 8, 11 and 13 

Load voltage limits 24 [0.95 – 1.05] 

Shunt Cap 9 Bus 10, 12, 15, 17, 20, 21, 23, 24 and 29 

Xfmr Tap 4 Branches 4-12, 6-9, 6-10, 28-27 

Control variables 24 N/A 

 

Simulations are run 30 times to obtain statistical conclusion. Results from other methods were also presented 

to compare the results, such as basic artificial bee colony (ABC), differential evolution (DE), PSO, DEEPSO, 

adaptive constraint differential evolution (ACDE), improved NSGA-III, adaptive group search optimization 

(AGSO), sine-cosine algorithm (SCA), and modified sine-cosine algorithm (MSCA) [28]-[32]. Especially, DE is 

known for its effectiveness on continuous optimization problem [32] and thus there are four DE related algorithms 
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Fig. 5.  Modified IEEE 30-bus. 
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chosen for comparison. Those are the state-of-the-art algorithms published within the last five years in high-

quality journals. To have fair comparison, the max iteration is set to 200. The comparison including execution 

time and the number of function evaluations are given for four scenarios in Table V.  Cost coefficients of Case 1 

and Case 2 are listed in Table IV [28]. Note that for Case 1, only coefficients a, b and c are used. 

 

Table IV Cost coefficients for Cases 1 and 2  

 a($/h) b($/MWh) c($/MW2h) d($/h) e(rad/MW) 

Bus 1 0 2 0.00375 18 0.037 

Bus 2 0 1.75 0.0175 16 0.038 

Bus 5 0 1 0.0625 14 0.04 

Bus 8 0 3.25 0.00834 12 0.045 

Bus 11 0 3 0.025 13 0.042 

Bus 13 0 3 0.025 13.5 0.041 

 

Scenario 1 is for the minimization with the quadratic fuel cost (20). Table V shows the comparisons of various 

algorithms for four scenarios respectively. From Table V, it is found that the minimum cost of DEEPSO-OL is 

800.411 $/h, with 0 standard deviation. In Scenario 2, all buses with generating units have used the fuel cost 

function (21) with valve point loading. The minimum total fuel cost from DEEPSO-OL is 830.391$/h, with 0.02 

standard deviation. Scenario 3 is for the minimization of the total transmission loss (22). Table V lists that the 

minimal line loss found by the proposed method is 3.021 MW, with 0 standard deviation.  Scenario 4 is for the 

minimization of the L-index (23). Table V shows that the minimal L-index is 0.111, with 0.005 standard deviation. 

It is interesting to note that results on some published papers seem to be promising at the first glance, and yet 

there are either some control variables or state variables violating their limits [31][32]. The common reason is that 

the papers failed to consider voltages constraints (0.95 – 1.05) on each PQ buses. In Appendix A, results of 

DEEPSO-OL from four scenarios are posted for cross check, and it is shown that the control variables are within 

constraints. 

Table V Comparison by algorithms of 4 scenarios in IEEE 30-bus   

Scenario 1 

 

Method 

Fuel cost ($/h)    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 800.411 800.413 800.418 0.00 33.3 15900 

DEEPSO 800.501 801.742 803.218 0.77 67.2 27900 

ABC 800.707 802.262 803.411 0.82 42.2 20065 

DE 802.629 803.031 803.509 0.25 39.8 20000 

PSO 800.648 802.101 804.201 1.11 41.6 20100 

ACDE [28] 800.411 800.413 800.418 0.00 83.2 N/A 

NSGA-III [29] 802.173 803.632 804.459 N/A 10.8 N/A 

AGSO [30] 801.287 801.750 802.509 N/A N/A N/A 

SCA [31] a N/A 800.102 N/A N/A N/A N/A 

MSCA [31] a N/A 799.310 N/A N/A N/A N/A 

SF-DE [32] 800.413 800.415 800.419 0.00 133.1 N/A 

SP-DE [32] 800.429 800.468 800.441 0.01 120.1 N/A 

MSA [33] N/A 800.510 N/A N/A 14.9 N/A 

Scenario 2 

 

Method 

Fuel cost considering valve effect ($/h)    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 830.391 830.396 830.483 0.02 42.6 16860 

DEEPSO 830.469 831.558 833.433 0.58 70.1 28100 
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ABC  831.125 834.081 838.326 1.71 50.4 20050 

DE 832.483 832.483 832.483 0.26 45.9 20000 

PSO 832.582 832.753 835.383 0.83 44.6 20100 

ACDE [28] 832.072 832.096 832.394 0.06 81.5 N/A 

SF-DE [32] 832.088 832.106 832.129 0.02 137.6 N/A 

SP-DE [32] 832.481 832.655 832.876 0.09 141.7 N/A 

Scenario 3 

 

Method 

Total loss (MW)    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 3.021 3.021 3.032 0 38.8 14704 

DEEPSO 3.024 3.035 3.138 0.023 70.8 27667 

ABC  3.112 3.322 3.595 0.112 51.9 20077 

DE 3.276 3.311 3.371 0.03 46.5 20000 

PSO 3.051 3.072 3.331 0.051 54.7 20100 

MSA [33] N/A 3.101 N/A N/A N/A N/A 

ACDE [28] 3.084 3.085 3.086 0 82.3 N/A 

SF-DE [32] 3.084 3.086 3.086 0.003 84.5 N/A 

SP-DE [32] 3.084 3.085 3.086 0.003 136.4 N/A 

Scenario 4 

 

Method 

Minimize L-index    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 0.097 0.111 0.121 0.005 44.3 15100 

DEEPSO 0.106 0.165 0.222 0.029 89.9 28500 

ABC  0.108 0.165 0.255 0.038 83.6 20090 

DE 0.146 0.152 0.156 0.003 59.2 20000 

PSO 0.106 0.131 0.181 0.016 80.3 20100 

SF-DE [32] N/A 0.137 N/A N/A 136.5 N/A 

SP-DE [32] N/A 0.137 N/A N/A 130.7 N/A 

a infeasible solutions due to the violation of state variables (exceeding load bus voltage limits) 

 

Table V presents various statistics of algorithms including minimum, average, maximum, standard deviation, 

computation time and total number of functions evaluated. Since all scenarios are minimization problems and 

thus the smaller value they found, the better performance. A solution is feasible means that not only this solution 

is in its feasible domain, but other state variables depending on the solution are within limits as well. Some 

algorithms listed in Table V were infeasible according to literature. In all, we consider that if the average fitness 

values over 30-run is less, the solution is more accurate; if the standard deviation is less, the algorithm is more 

robust and if computation time and total function evaluated are less, the algorithm is more efficient.  Jo
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Results in Scenario 1 show that the proposed method found the least minimal cost compared to other 

approaches in the article and especially the ‘0’ standard deviation proves its robustness. Function evaluation times 

denotes that the proposed algorithm can find the best solution in a much less function evaluation process, which 

demonstrates its effectiveness.  

Results in Scenarios 2, 3 and 4 show that the proposed method outperforms other methods with least standard 

deviation (except Scenario 4), time, and function evaluations. Especially in Scenario 3, a significant improvement 

in average value by 9.06% was found compared with the original ABC, which demonstrated the exploitation 

power of the proposed method in a more complex solution domain.  

Fig. 6 shows the convergence properties of ABC, DE, PSO and DEEPSO-OL. For all scenarios, in total 200 

iterations the proposed algorithm not only outperforms others in the convergence speed, but also the initial solution 

shows higher quality than others in Scenarios 2 and 3. This is because perturbation has been added to the 

acceleration coefficients 𝜔1 and 𝜔2 and global best particle, 𝑏𝑔. This is to increase the varieties of initial solutions 

such that they may contain more feasible information. 

To further compare and obtain more information on the performance of the algorithms, we ensure the same 

initial solution as a starting point for all algorithms, as shown in convergence plot Fig. 7. Also, we purposely set 

the number of function evaluation to be around 10000 such that it terminates at an early stage as shown in Table 

VI. By doing so, we can have a fair comparison on the performance and see which algorithm can find the best 

  
(a) Convergence for Scenario 1                                                                (b) Convergence for Scenario 2 

 

  
(c) Convergence for Scenario 3                                                                   (d) Convergence for Scenario 4 

Fig. 6. Convergence properties for case 1 on 4 scenarios. 
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solution efficiently while performing relatively low function evaluation. Note that the number of function 

evaluation is not exactly 10000 for all, but close to 10000.  

 

Table VI Comparison by algorithms for 4 scenarios in IEEE 30-bus   

Scenario 1 

 

Method 

Fuel cost ($/h)    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 800.423 800.437 800.472 0.01 21.2 9780 

DEEPSO 800.501 801.312 802.218 0.72 20.2 10100 

ABC 803.701 806.893 811.018 2.07 23.4 10050 

DE 801.182 802.694 807.026 1.23 18.9 10000 

PSO 801.991 802.141 802.142 0.03 21.8 9999 

Scenario 2 

 

Method 

Fuel cost considering valve effect ($/h)    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 830.391 830.485 832.724 0.42 23.2 9850 

DEEPSO 830.969 832.578 834.433 0.79 20.5 10100 

ABC  832.146 836.706 845.471 3.41 25.4 9950 

DE 832.788 833.483 838.401 1.11 24.9 10000 

PSO 832.582 833.122 836.973 1.14 21.9 10000 

Scenario 3 

 

Method 

Total loss (MW)    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 3.025 3.024 3.067 0.050 24.6 9925 

DEEPSO 3.074 3.095 3.188 0.087 23.8 10100 

ABC  3.281 3.856 4.776 0.348 25.8 10055 

DE 3.344 3.487 3.576 0.060 22.6 10000 

PSO 3.051 3.083 3.271 0.062 26.7 10100 

Scenario 4 

 

Method 

Minimize L-index    

Min Avg. Max Standard 

deviation 

T(s) Function 

evaluated 

DEEPSO-OL 0.108 0.152 0.226 0.030 32.3 9772 

DEEPSO 0.111 0.195 0.282 0.079 30.9 10100 

ABC  0.100 0.135 0.173 0.014 39.9 10053 

DE 0.117 0.171 0.241 0.030 32.2 10000 

PSO 0.116 0.135 0.191 0.014 38.5 9999 
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From Table VI, we observed that our proposed algorithm outperformed the rest of the algorithms in average 

and stand deviation metrics except for scenario 4. It appears that the proposed algorithm requires more function 

evaluations to achieve stable result for scenario 4. Fig.7 presents the convergence properties for all scenarios with 

similar initial solution. We can see that the proposed algorithm shows fast and stable convergence for scenario 1; 

For scenarios 2 and 3, it’s not the fastest one, yet it was able to achieve the best objective value in the end; the 

proposed algorithm’s convergence in scenario 4 was not able to stand out. Note that the function evaluation is still 

around 10,000 for each algorithm even though the total iteration is 200, which was achieved by adjusting the 

number of populations. 

4.2 Sensitivity Analysis to DEEPSO-OL Control Parameters 

Since two control parameters, the population size N and communication probability p, are essential in DEEPSO-

OL, the effects of these two parameters will be discussed. The following figures illustrate the impacts of the two 

control parameters by heatmaps.  

  
(a) Convergence for Scenario 1                                                                (b) Convergence for Scenario 2 

 

  
(c) Convergence for Scenario 3                                                                   (d) Convergence for Scenario 4 

Fig. 7. Convergence properties for case 1 on 4 scenarios with similar initial solution. 
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Fig.8 shows the sensitivity heatmap for Scenario 1. In all, as population size and communication probability 

vary, the results are stable. The best solution (minimum generation cost) can be found as 800.416 $/h at N = 100 

and p = 0.5. Fig. 9 illustrates the proposed algorithm is consistent with results of Scenario 1 as population and 

communication probability vary. The best solution can be found as 830.391 $/h at N = 100 and p = 0.1. Fig. 10 

shows that the minimal power loss 3.023 MW is the best result found by (N = 90, p = 0.6) and (N = 100, p = 0.5). 

It is also noticed that when N = 20 and p = 0.4, the best solution is 3.024 which offers a good trade-off between 

computational cost and best result. When population size increases, the performance would improve in general, 

as the color becomes lighter. Fig. 11 shows that as population and communication probability vary, the results 

also vary considerably. The best solution can be found as 0.098 at N = 20 and p = 0.1. 

 

4.3 Balance Analysis 

Recall that diversity, exploration, and exploitation are defined in section 2.5, and we plot the balance curves 

below as shown in Fig. 12. The population size is set to 20 and a total of 200 iterations is chosen for each algorithm 

for four scenarios.  

 

      Fig. 8.  Sensitivity heatmap on size N and probability p for Scenario 1.           Fig. 9.  Sensitivity heatmap on size N and probability p for Scenario 2. 

 

  

 Fig. 10.  Sensitivity heatmap on size N and probability p for Scenario 3.          Fig. 11.  Sensitivity heatmap on size N and probability p for Scenario 4. 
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It is observed from Fig.12 that the proposed method achieves a better balance on scenario 2, 3 and 4 compared 

with the rest algorithms indicated by the average exploration and exploitation values. The proposed method for 

scenario 1 does not seem to achieve a good balance since the average exploration is 8.1% and exploitation is 

91.9%, yet it still outperforms the rest of the algorithms from Table V and VI. Even though researchers have 

identified the importance of balancing exploration and exploitation, and yet the relationship between diversity and 

exploration and exploitation is still unclear and more research is needed [41].  In other words, there is not always 

a positive correlation between diversity measures and fitness. Note that exploration and exploitation equations in 

this work are also derived based on diversity, to achieve a better understanding of this, we will conduct more 

research and theoretical analysis in our future word. 

 

4.4 Statistical Analysis 

Statistical analysis was conducted to draw more insights on the comparisons over 30 times run. Figs. 13 – 16 

display the box plot for the comparison and Table VII shows the one-tail paired t-test to determine if the proposed 

algorithm is considered improvement statistically. Box plot is a statistical tool to visually show the mean, variance, 

1st and 3rd percentile and maximum or minimum of a group of values. One-tail paired t-test is to test if one group’s 

mean is larger or less than the other group’s mean statistically. 

 

  

Fig. 12. Balance Analysis 
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Fig. 13. Boxplot for Scenario 1. 

 

Fig. 14. Boxplot for Scenario 2. 
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The first three scenarios’ boxplots have demonstrated that the proposed method in the first column is the most 

robust with almost zero standard deviation and efficient with least median values. The second-best algorithm is 

DEEPSO. Another observation is that even though results from the original PSO for Scenarios 2, 3 and 4 seem to 

have good mean value and small standard deviation and yet they have multiple outliers which degrades the whole 

quality. A paired statistical T test is conducted to draw statistical conclusion shown in Table VII based on the 

comparison between proposed method and the second-best methods for each scenario. Note that the T test is 

conducted based on 30 simulations, and the best and average solution are listed for reader’s references. There are 

only DEEPSO, ABC, PSO, DE developed by authors and thus available to conduct 30 simulations and yet other 

results from references do not provide 30 simulations. Therefore, the second-best methods are only chosen from 

the above ones.  The null hypothesis (H0) is defined such that the proposed method does NOT have significant 

improvement over the second-best method statistically. The alternative hypothesis (H1) is the opposite statement.  

TABLE VII PAIRED STATISTICAL T TEST  

Cases       DEEPSO-OL                 Second-best  P-value 

 Best Avg. Best Avg.  

1 800.411 800.413 800.501 801.742 1.03e-10 

2 830.391 830.396 830.469 831.558 2.58e-12 

3 3.021 3.021 3.024 3.035 1.94e-10 

4 0.097 0.113 0.106 0.131 9.08e-11 

 

The P-value is a measure of the probability of observing the given test statistics assuming that the null 

hypothesis is true. The P-value for each scenario is much less than 0.01, which means there is strong evidence at 

 

Fig. 15.  Boxplot for Scenario 3. 
 

 

Fig. 16.  Boxplot for Scenario 4. 
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99% confidence level to reject the null hypothesis. In other words, the proposed algorithm has significant 

improvement over the second-best method statistically. 

 

4.5 Case 2: Wind Power Integrated OPF (WOPF) 

In this case, wind generators were added to buses 2 and 5 in the IEEE 30-bus system. Two wind scheduled 

power are added in the control variables. The assumption is made that wind farms will consistently harness the 

maximum amount of available wind energy. Various reserve and penalty cost coefficients were selected to prove 

the system's performance. The unit for cost coefficients is $/h•MW and the economic impacts of reserve and 

penalty cost coefficients on power scheduling have been investigated in Fig. 17 and Fig. 18, respectively. Table 

VII gives the comparison in this case for the cost coefficients up to 0.2.  

 

Fig. 17 shows the optimal scheduled power output for wind power W1 and W2, and conventional power P1, 

P2 and P3, on bus 2, 5, 8, 11, and 13, respectively. Note that the W1 and W2 have power output limits of 20-80 

and 15-50 (MW), respectively. When penalty cost coefficient kp is set to 0.1, while increasing kr from 0 to 1, the 

output power from W1 and W2 decreases to their limits, because if the SO overestimates the wind power, it will 

be fined a big amount of expense due to the high reserve cost coefficient. Thus, as kr goes high, the SO prefers to 

schedule less wind power.   

 

 

Fig. 17.  Power output with respect to reserve cost coefficient kr. 
 

 

Fig. 18.  Power output with respect to penalty cost coefficient kp. 
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Fig. 18 shows the optimal scheduled power output for wind power W1, W2, and conventional power P1, P2 

and P3. When reserve cost coefficient kr is set to 0.1, while increasing kp from 0 to 1, the output power from W1 

increases gradually and W2 remains at its maximum power limit (50MW). Because if the SO underestimates the 

wind power, it will be fined a big amount of expense due to the high penalty cost coefficient; thus, as kp increases, 

the SO prefers to schedule more wind power.  Thus, the relationships between the optimal scheduled power output 

and cost coefficients can be used as references for the SO in making decision. It is notable that the values of cost 

coefficients depend on the local power market, wind source and reserved power cost, the criteria of choosing the 

values can be a further research topic and thus is not the focus of this paper. To further demonstrate the economic 

impact of WOPF, several different combinations of cost coefficients are presented, observing the power output, 

as shown in Table VIII. 

TABLE VIII COMPARISON FOR CASE 2 WITH DIFFERENT PENALTY FACTORS 

reserve factor 

($/h•MW) 

penalty factor 

($/h•MW) 

W1 

(MW) 

W2 

(MW) 

Fuel cost ($/h)   

Min Avg. Max Std. T(s) 

0.01 0.01 80 50 456.224 456.744 457.012 0.93 31.2 

0.01 0.10 80 50 456.219 457.019 457.819 0.51 32.3 

0.01 0.15 80 50 457.023 457.436 458.163 0.65 39.7 

0.01 0.20 80 50 456.810 457.119 457.921 0.78 35.6 

0.10 0.01 43.69 49.96 715.856 716.488 716.488 0.95 39.9 

0.15 0.01 29.47 32.19 775.012 775.564 776.132 0.43 35.4 

0.20 0.01 22.27 23.85 805.553 806.058 807.253 0.77 36.1 

 

There are several observations on Table VIII. (1) When reserve factor remains 0.01 ($/h•MW), as noted in the 

first four rows, and penalty factor was being increased from 0.01-0.20 ($/h•MW), maximum wind power (80 and 

50 MW) was scheduled by DEEPSO-OL to W1 and W2. This is because the actual wind power cannot align with 

the scheduled one, the cost of purchasing power from other source remains low (low reserve factor value). 

Therefore, regardless of what the penalty factor is, maximum wind power was scheduled in this situation. (2) 

When reserve factor starts to increase to higher values, for instance, 0.20 ($/h•MW) in the last row, the scheduled 

wind power output for both W1 and W2, as determined by DEEPSO-OL, was reduced to avoid overestimation, 

and associated high costs resulting from the implementation of high reserve factors. (3) Overall, the integration 

of wind power into the system will lead to a substantial reduction in total costs, being dependent on factors such 

as penalty and reserve coefficients, as well as the available wind resources.  

Note that although there are various solutions for OPF with renewable energy resources, there is no standard 

model and test framework across the literature yet. In other words, each existing study may propose a unique 

model to incorporate wind energy, unique test circuits, etc. Thus, it is difficult to have apple to apple comparison. 

For instance, many works do not consider wind power output as control/optimization variables, but consider it as 

negative load, which is a known information obtained from forecast [38][39]. The wind power forecast also varies 

greatly depending on methodologies. Wind power forecast has two major approaches in terms of output: point 

forecast and probabilistic forecast. Point forecasting gives a single future wind power output. On the contrary, 

probabilistic forecast gives a conditional distribution of future wind power output [39], so that system operators 

and traders can utilize a much broader set of information. The wind power distribution can be further represented 

as quantiles, interval forecasts, PDFs and scenarios generated by Monte Carlo simulation [11][36][37]. The main 

advantage of WOPF model in this work is that the wind output, as part of control variables, is derived from wind 

speed PDF to have its analytic expression as described in Appendix B, which not only takes forecast error into 
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account but also requires much less computing power compared with Monte Carlo simulation method. 

 

5 DISCUSSION AND CONCLUSION 

This paper summarized several categories by which PSO variants are developed and proposed a novel 

differential evolutionary PSO integrated with orthogonal learning (OL). It has proved to be promising in the 

balance between exploration and exploitation. The DEEPSO-OL is improved from aspects of improving control 

parameters by self-evolving on CI and SI coefficients, searching mechanism with OL, perturbation mechanism 

by adding noise on global best, and population topology with stochastic star shape. To evaluate its performance 

on a real-world problem, OPF and WOPF are developed accordingly. In OPF, there are four objective functions 

tested and compared with other state-of-the-art evolutionary computation algorithms published in recent years. 

The proposed algorithm outperformed all other algorithms in less computing time, less objective values, less 

standard deviation (exception on Scenario 4), and less function evaluations.  

Also, by running 30 simulations, statistical analysis and T test were conducted to show that the DEEPSO-OL 

has significantly improved the performance compared with the second-best algorithm, especially on complex 

solution domains. Parameter sensitivity analysis is presented via heatmap which vividly demonstrates that even 

using less population, sound results can be obtained. WOPF was developed such that network constraints were 

also considered and DEEPSO-OL proves its effectiveness on the complex stochastic optimization problem by 

generating robust solutions in a reasonable time. Such a tool can be used to assess wind power integration and 

provide good insights for decision makers.  

The trend of evolutionary computation research is to solve real-world complex problems. For example, the 

proposed algorithm can be potentially used to solve complex supply chain management problems where optimal 

production plan, allocation of distribution centers, and vehicle routes are to be determined under network and 

supply-demand balance constraints. This is a very complicated NP hard problem. This work not only shows the 

importance of balancing exploration and exploitation but also provides improvement guidance from four aspects 

mentioned in introduction for researchers. Yet, this work does not intend to imply that the more aspects algorithm 

gets tuned simultaneously, the better performance it will achieve, because algorithm should be tuned case by case 

to fit for specific problems. Therefore, further investigation can be done into the individual contribution of these 

four aspects. In addition, for all evolutionary computation-based solutions, they suffer from non-consistent results 

of each run, and computational burden. Computational burden may be compensated by stronger computing power 

and/or parallel computing. Therefore, for future works, authors aim to improve the robustness of this algorithm 

and use a larger system with more control variables test. Moreover, researchers in this community can think of 

more practical applications where they are too hard, if not impossible, to be solved by traditional methods and do 

not require consistent solution repeatedly. 
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APPENDIX A: OPTIMAL SOLUTION OBTAINED BY DEEPSO-OL FOR IEEE-30 SYSTEM 

Control 

Variables 

Min Max Scenario 1 Scenario 2 Scenario 3 Scenario 4 

PG2 (MW) 20 80 48.7869 43.8497 80.0000 31.0681 

PG5 (MW) 15 50 21.3968 17.9695 50.0000 31.0547 

PG8 (MW) 10 35 21.1653 10.0000 35.0000 22.2462 

PG11 (MW) 10 30 11.9035 10.0000 30.0000 21.2139 

PG13 (MW) 12 40 12.0001 12.0000 40.0000 18.0070 

V1 (p.u) 0.95 1.10 1.0815 1.0999 1.0700 1.0700 

V2 (p.u) 0.95 1.10 1.0626 1.0797 1.0660 1.0318 

V5 (p.u) 0.95 1.10 1.0313 1.0477 1.0470 0.9754 

V8 (p.u) 0.95 1.10 1.0355 1.0509 1.0531 0.9844 

V11 (p.u) 0.95 1.10 1.0781 1.0977 1.0869 1.0894 
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V13 (p.u) 0.95 1.10 1.0566 1.0593 1.0667 0.9557 

T4-12 (p.u) 0.90 1.10 1.0154 1.0544 1.0103 0.9653 

T6-9 (p.u) 0.90 1.10 0.9618 0.9280 0.9631 0.9241 

T6-10 (p.u) 0.90 1.10 0.9806 0.9739 1.0017 0.9963 

T28-27 (p.u) 0.90 1.10 0.9707 0.9778 0.9760 0.9007 

Qc10 (MVar) 0 5 4.8912 0.9427 0.6809 2.6581 

Qc12 (MVar) 0 5 0.1059 0.1293 3.9682 1.6465 

Qc15 (MVar) 0 5 2.2623 4.0402 4.2123 2.3399 

Qc17 (MVar) 0 5 4.9342 4.9993 5.0000 1.6338 

Qc20 (MVar) 0 5 4.4215 3.8652 3.6695 1.8388 

Qc21 (MVar) 0 5 5.0000 4.9998 5.0000 2.3321 

Qc23 (MVar) 0 5 2.9204 2.7587 2.5803 3.8374 

Qc24 (MVar) 0 5 4.9777 4.9999 4.9998 0.5975 

Qc29 (MVar) 0 5 2.4285 2.2443 2.1775 3.1007 

Result   800.44 830.42 3.03 0.113 

 

APPENDIX B: DERIVATION OF WIND POWER PDF 

The PDF of wind speed is considered as Weibull distribution [13]: 

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)

𝑘−1

(𝑒−(𝑣/𝑐)𝑘) 

0 < 𝑣 < ∞                                                                          (C1) 

where Weibull distribution can characterize the wind speed random variable by using different factor values k and c. Figs. C1 and C2 give the 

Weibull PDF functions for k = 1 and 2, respectively, with c = 10, 15, and 20.  

 

The power output of wind farms is subject to randomness and can be derived through a transformation from wind speed. The relationship 

between wind turbine power and wind speed is expressed as [6]: 

𝜔 = {

0,           𝑣 < 𝑣𝑛 𝑜𝑟 𝑣 > 𝑣0

𝜔𝑣
(𝑣−𝑣0)

(𝑣𝑟−𝑣𝑛)
,  𝑣𝑛 ≤ 𝑣 ≤ 𝑣𝑟

𝜔𝑟,    𝑣𝑟 ≤ 𝑣 ≤ 𝑣0

                                                                                   (C2) 

where 𝑣𝑟 is the rated wind speed, and 𝑣𝑛 and 𝑣0 are cut-in and cut-out speeds, respectively. Given a Weibull distribution for a specific wind 

speed, Hetzer, Yu, and Bhattarai [13] provide a comprehensive guide for transforming the wind speed distribution into a wind power 

distribution: 

 

Fig. C1. Weibull PDF with k = 1.  
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𝜔 = 𝑔(𝑣) 

𝑔 : 𝑅 → 𝑅 

𝑓𝑊(𝜔) = 𝑓𝑉(𝑣) |
𝑑

𝑑𝜔
𝑔−1(𝜔)|                                                                            (C3) 

where 𝑣 and 𝜔 are respectively the wind speed and power random variables, 𝑔is the function that maps 𝑣 to 𝜔.  

Given 𝑔, the wind speed PDF 𝑓𝑉(𝑣) can be transformed to the wind power PDF 𝑓𝑊(𝜔) by (C3). It is worth mentioning that the wind 

speed PDF 𝑓𝑉(𝑣) can be obtained by historical meteorological data of a specific site, and we assume that it can be used for determining the 

expected values of wind speed and wind power. The expected wind power is considered as the predicted available power. 

Fig. C3 proves the PDF of wind power, which has been normalized to correspond to the given wind speed PDF with a shape factor k of 2 

and scale factors c of 10, 15, and 20. 

 

 

 

Note that the PDF of the wind power output comprises both continuous random and discrete random variables (at 0 and 1). 

 

APPENDIX C: ACRONYMS  

ABC Artificial bee colony AC Acceleration coefficient 

AGSO Adaptive group search optimization CI cognitive influence 

DE Differential evolution DEEPSO Differential evolutionary evolution PSO 

DEEPSO-

OL 

Differential evolutionary evolution PSO with 

orthogonal learning (OL) 

ED Economic dispatch 

EPSO Evolutionary PSO EV Electrical vehicle 

 

Fig. C2. Weibull PDF with k = 2.  

  

Fig. C3. Wind power PDF with k = 2 (discrete at 0 and 1; continuous between 0 and 1). 
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FA Factor analysis GA Genetic algorithm 

MSCA Modified sine-cosine algorithm OA Orthogonal array 

OED Orthogonal experimental design OL Orthogonal learning 

OPF Optimal power flow PDF Probability density function 

PSO Particle swarm optimization SCA Sine-cosine algorithm 

SI social influence SO System operator 

StdPSO Standard PSO WOPF OPF incorporating wind power 

 

 

APPENDIX D: DETAILED IMPLEMENTATION OF DEEPSO-OL ON OPF AND WOPF  

The overall pseudo code is shown in Algorithm 4. Here authors expand the implementation with certain details hoping to provide good 

instruction for readers to code by themselves. Meanwhile, we’ve uploaded all the source code to Github repository: 

https://github.com/wbai123/matlab-code-of-evolutionary-algorithms-for-optimal-power-flow for reference.  

 

Algorithm: DEEPSO-OL 

1.  Initialize swarm (parameters, topology, population) 

2.  Define a OL threshold p 

3.  Repeat iteration t 

4.  if rand () > p 

5.       /*use DEEPSO algorithm*/ 

6.       for i = 1 to swarm size n 

7.             𝑉𝑖
𝑛𝑒𝑤 = 𝑤𝑖0

∗ 𝑉𝑖 + 𝑤𝑖1
∗ (𝑋𝑟1 − 𝑋𝑖) + 𝑤𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝑖)       

8.             𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑉𝑖

𝑛𝑒𝑤 

9.             Mutate weights (𝑤𝑖0
∗ ,𝑤𝑖1

∗ ,𝑤𝑖2
∗ ) 

10.             /*replicate velocity and position copies using new w*/ 

11.             𝑉𝐶𝑖
𝑛𝑒𝑤 = 𝑤𝑐𝑖0

∗ 𝑉𝐶𝑖 + 𝑤𝑐𝑖1
∗ (𝑋𝐶𝑟1 − 𝑋𝐶𝑖) + 𝑤𝑐𝑖2

∗ 𝑷(𝑏𝑔
∗ − 𝑋𝐶𝑖) 

12.             𝑋𝐶𝑖
𝑛𝑒𝑤 = 𝑋𝐶𝑖 + 𝑉𝐶𝑖

𝑛𝑒𝑤 

13.     end for 

14.     Enforce 𝑋𝑖
𝑛𝑒𝑤,𝑉𝑖

𝑛𝑒𝑤,𝑋𝐶𝑖
𝑛𝑒𝑤,𝑉𝐶𝑖

𝑛𝑒𝑤 within feasible limits 

15.     for i = 1 to swarm size n 

16.           Compute 𝑓(𝑋𝐶𝑖
𝑛𝑒𝑤) and 𝑓(𝑋𝑖

𝑛𝑒𝑤) /*evaluate solutions*/ 

17.           /*create new solution to replace the current one*/ 

18.           if 𝑓(𝑋𝐶𝑖
𝑛𝑒𝑤) < 𝑓(𝑋𝑖

𝑛𝑒𝑤) 

19.              𝑓(𝑋𝑖
𝑛𝑒𝑤) = 𝑓(𝑋𝐶𝑖

𝑛𝑒𝑤),  𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝐶𝑖

𝑛𝑒𝑤, 𝑉𝑖
𝑛𝑒𝑤 = 𝑉𝐶𝑖

𝑛𝑒𝑤, 𝑤𝑖0
∗ = 𝑤𝑐𝑖0

∗ ,𝑤𝑖1
∗ = 𝑤𝑐𝑖1

∗ ,𝑤𝑖2
∗ = 𝑤𝑐𝑖2

∗  

20.            end if 

21.       end for 

22.  else 

23.        /*construct OL based on DEEPSO*/ 

24.        Construct candidate solution by OL by Algorithm 3 

25.  end if 

26.  until termination criterion is met 

27.  return global best   

 

For OPF, the control variables Xi = [𝑃𝐺,2 ⋯𝑃𝐺,𝑖 , 𝑉𝐺,1 ⋯𝑉𝐺,𝑗 , 𝑇1 ⋯𝑇𝑖 , 𝑄𝐶,1 ⋯𝑄𝐶,𝑖] is described from (24). The overall structure can be 

divided into two parts. Line 4 – 22, is the DEEPSO, and line 23 – 25 is the DEEPSO-OL. Only one part is executed at each iteration based 

on the pre-defined OL probability p. Mutate weights in line 9 is based on (5). Line 16 is to compute the fitness values of 𝑋𝐶𝑖
𝑛𝑒𝑤(computed in 

line 12) and 𝑋𝑖
𝑛𝑒𝑤(computed in line 8). The equation to evaluate solutions is based on (31).  For WOPF, the main difference is that the 

control variables become Xi =[𝜔1 ⋯𝜔𝑖 , 𝑃𝐺,2 ⋯𝑃𝐺,𝑖 , 𝑉𝐺,1 ⋯𝑉𝐺,𝑗 , 𝑇1 ⋯𝑇𝑖 , 𝑄𝐶,1 ⋯𝑄𝐶,𝑖] and the computation of fitness value is based on (32). 
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Highlights 

 

1) Propose a novel differential evolutionary PSO variant method 

based on orthogonal learning to balance exploration and 

exploitation.   

2) Apply to a real-world non-linear optimization OPF problem. 

3) Develop a wind energy conversion system model WOPF for 

wind integrated optimal power flow. 
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