

A quick and effective iterated greedy algorithm for
energy-efficient hybrid flow shop scheduling problem

with blocking constraint
1st Hao-xiang Qin

School of Computer Science
Liaocheng University

Liaocheng, China
987352978@qq.com

2nd* Yuyan Han
School of Computer Science

Liaocheng University
Liaocheng, China

hanyuyan@lcu-cs.com

3rd Junqing Li
School of Computer Science,
Shandong Normal University

Jinan, China
lijunqing@lcu-cs.com

 4th Hongyan Sang
School of Computer Science

Liaocheng University
Liaocheng, China

sanghongyan@lcu-cs.com

5th Qingda Chen
School of Computer Science

Liaocheng University
Liaocheng, China

chenqingda@lcu-cs.com

6th Leilei Meng
School of Computer Science

Liaocheng University
Liaocheng, China

mengleilei@lcu-cs.com

7th Biao Zhang

School of Computer Science
Liaocheng University

Liaocheng, China
zhangbiao@lcu-cs.com

Abstract With the continuous development of national
economy, the problems of energy consumption are becoming more
and more prominent. Similarly, the energy efficient scheduling
problem in manufacturing has attracted much attention of the
researchers. Some flow-shop scheduling problems have made
progress on energy saving, but the research on hybrid flow shop
with blocking constraint(BHFSP) is very few. Due to its NP-hard
characteristic, in this paper, we suggest a mathematical model of
BHFSP and a meta heuristic method named quick iterative greedy
algorithm (IGQ) to solve this problem. Compared with other
existing IG algorithms, for BHFSP, three main contributions of
the IGQ are described as follows: First, we use the MME to
initialize the solution. Second, we develop a quick local
perturbation strategy to ensure the convergence of the algorithm.
Third, a quick global perturbation strategy is proposed to
guarantee the diversity of the algorithm. Computational results
and comparisons verify the effectiveness of proposed algorithm
IGQ for solving BHFSP.

Keywords BHFSP, energy-efficient, quick, perturbation

strategy

I. INTRODUCTION

The hybrid flow shop scheduling problem (HFSP) has been
widely studied by many researchers [1]. For HFSP, there are
different stages of processing jobs, in which has a different
number of machines, a job sequence to be scheduled must passes
through all stages. In recent years, due to the practicability of
HFSP, many scholars have made a lot of achievements on
HFSP.

For the HFSP with single objective, Li et al. [2] proposed a
hybrid variable neighborhood search(HVNS) and an improved
artificial bee colony (DABC)algorithm [3] to solve this problem.
Liu et al. [4] proposed a two stage flow shop with deteriorating
effect and different sizes of jobs. In multi-objective of HFSP, an
iterated local search(ILS) algorithm is proposed to minimize the

total energy costs, peak load and makespan [5]. Zhang et al.
employed a three-stage multi-objective algorithm to solve HFSP
with energy-efficient [6]. In this paper, we consider the
constraint of adding blocking constraint to HFSP problem.

 IG algorithm is a simple and effective algorithm. It firstly
used to optimize the permutation flow shop scheduling problem
(PFSP) [7], unlike other swarm intelligence algorithms, it
generates only one solution at each iteration. Firstly, it
generates an initial solution, and then continuously generates
better solution based on the current one by using the iterative
methods. In this paper, an improved iterated greedy algorithm
(IG) algorithm is proposed to reduce the energy consumption
of BHFSP.

The main contributions of this paper are as follows:
(1) It has a simple code structure and can reduce the time

complexity of the local search from O(n3) to O(n2).
(2) In addition to these jobs that need to be removed in the

destruction phase, there is no need for extra adjustment
parameters.

(3)

II. ENERGY-EFFICIENT HYBRID FLOW SHOP SCHEDULING

PROBLEM WITH BLOCKING CONSTRAINT

Comparing with the HFSP, there are no intermediate buffers
existing for any adjacent machines for BHFSP. Once a job is
completed at the current stage, it must be transferred to the next
stage to process. Thus, it is necessary to consider the blocking
and idle time of each machine. In the following two main steps,
one is the machine assignment for each job, another is allocation
the collections of jobs on selected machines. Except of these
constraints, the BHFSP is subject to the following constrains.

1)

325

11th International Conference on Information Science and Technology (ICIST)
Chengdu, China, May 21-23, 2021

978-1-6654-1266-7/21/$31.00 ©2021 IEEE

20
21

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
fo

rm
at

io
n

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
 (I

C
IS

T)
 |

97
8-

1-
66

54
-1

26
6-

7/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IS
T5

26
14

.2
02

1.
94

40
64

8

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

2)

3)

4)

5)

: The total number of jobs, indexed by

: The total number of stages, indexed by
: The number of parallel machines at stage and

: The available time of machine at stage .

: The processing time of job at stage .

: The beginning time of job at stage .

: The ending time of job at stage .

: The blocking time of job at stage .

: Record the number of machine with the job

processing at the preceding stage.
: The number of machine with the job processing

at the current stage .

: Power of machine at stage processing a job per

unit time.

: Power of machine at stage staying at the idle state

per unit time.

: Power of machine at stage staying at the block

state per unit time.
To further illustrate the difference between HFSP and

BHFSP, a simple example is given in Fig.1.
As shown in Fig.1, if these is no intermediate buffer

between any two consecutive machines, the completion time
will be 20. Whereas, when there are sufficient buffers exist for
any adjacent machines, the completion time is reduced to 16.
Thus, in this example, the blocking constraint can increase the
completion time. The reason is that some jobs are blocked on
current machine that the machine of next stage is not available
for processing, for instance, due to the machine 3 and 4 are not
available at 5 moments, job 3 is blocked on machine 1 (noted
by shadow rectangular).

The blocking constraint increases the total completion time.
Thus, we are encouraged to study BHFSP to reduce the
blocking time. We construct the mathematical model of BHFSP
to the further explain this problem.

Fig. 1. The Gantt comparison of HFSP with and without blocking constraint

(1)

 (2)

(3)
 (4)

 (5)

 (6)

 (7)

 (8)

(9)

(10)

(11)
Except for the objective of makespan, the energy-efficient

plays a key role in the practical factory production. We know
that the energy consumption exists in any stages, i.e., the
processing stage, the blocking stage, the idle stage.
Furthermore, different scheduling job sequences may emerge
different length of idle time and blocking time that lead to
increase energy consumption. Thus, we not only consider the
energy consumption of processing time, but also consider the
energy consumption of the blocking and idle time. The
objective of energy consumption is given as follows.

326

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

Objective:

Min

(12)

 (13)

(14)

 (15)

where TEC is the total energy consumption, shows the

energy consumption when machines process jobs,

represents the energy consumption that the jobs are blocked on
machines, reflects the energy consumption when

machines stay at the idle state.

III. PROPOSED QUICK ITERATED GREEDY ALGORITHM

A. Basic iterated greedy algorithm

The existing IG mainly includes five parts: initialization,
destruction, construction phase, iterative improvement, and
acceptance criterion. Firstly, it uses a heuristic NEH to produce
an initial solution, then an iterative improvement is used to
improve the performance of obtained solution by continuous
insertion. In destruction phase of this procedure, the job

sequence is partially destroyed, the number

of these removed jobs are controlled by parameter d. When the
phase is finished, we obtain two partial job sequence

and , where includes the removed d jobs and

 consists of the rest jobs. In construction phase, every job

in is inserted into every possible slots of to test,
the best slot that satisfies the optimization objective value will
be admitted until all jobs in are tested. After that, the
same local search algorithm as before is used again to improve
the convergence of obtained solution. Finally, with the
acceptance criterion performing, besides checking if it is a new
best permutation, a simulated annealing algorithm is applied to
determine whether select the improved job sequence to replace
the current sequence or not. The procedure of basic IG is given
as follows.

d

B. The proposed quick iterated greedy algorithm

In this paper, we developed a quick iterated greedy algorithm
(IGQ) to solve the BHFSP. Based on this problem, a heuristic
method MME (MinMax combining NEH (Nawaz, Enscore and
Ham)) is employed to generate an initial solution by reducing
the critical path length. And then, in order to maintain a balance
between strengthening convergence and achieving more rapid
evolution, we proposed a quick local perturbation strategy to
increase the solution performance with continuous updating
iteration. In traditional IG, the simulated annealing acceptance
criterion is utilized to ensure the diversity of the solutions. In
this paper, we developed a global perturbation strategy which
is put into the simulated annealing strategy. Fig. 2 and
Algorithm 2 show the basic framework of proposed IGQ.

Fig. 2. The framework of proposed IGQ

327

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

()temp tempPerturbationStrategy

C. Solution encoding and decoding

 For the HFSP, the permutation-based representation is widely
used for solution encoding. Thus, in BHFSP we also apply an

n-dimensional integer sequence to

represent a solution, where denotes a job and represents

the number of a job sequence.

D. Initial solution

 In IG, a good initial solution can make the algorithm generate
better performance, so as to achieve the goal, the application of
heuristic algorithm becomes very important. In single-objective
optimization of flow shop problems, MME [8] , with a shortest
critical path to shorten the blocking time of jobs has been
successfully applied. To the best knowledge of us, in BHFSP,
few people used the MME to complete the initialization
operation. Thus, in this paper, MME is utilized to solve the
BHFSP. Algorithm 3 depicts the step of MME.

1

 E. Destruction and construction phase

The task of these two phases is to construct a completed and
feasible scheduling sequence. The destruction of job sequence,
in which is generated by randomly extracting jobs

from job sequence and put them into one by one.

consisted of the rest jobs. Then these jobs in are

inserted into all positions of .The best one sequence is
selected to replace the current best sequence. The destruction
phase and construction phase are shown in Algorithm 4.

origin

328

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

F. The quick local perturbation strategy
In the existing IG algorithms, the local search strategy is

based on the insertion operation, such as the local improved
insertion operation. In a given series of jobs, the number of n
jobs should be selected first and the time complexity is O(n),
Then, after inserting into all the positions, a total of n-1 insertion
operations are required, so the time complexity becomes O(n(n-
1)). Finally, after finding the position that minimizes the
corresponding objective value, the selected position and all the
jobs after the selected position are moved, assuming that the
selected position is p, then the number of moving jobs becomes
n-p+1, so the time complexity of the whole local search strategy
is O(n(n-1)(n-p+1)). Moreover, if the value of objective is
improved after all the above operations, there is a need to re
execute this step until there is no way to improve, which will
greatly improve the execution time. Thus, in this paper, we
abandon the traditional IG local search strategy which will be
improved forever if it is improved, and use the quick local
perturbation strategy, which time complexity is only O(n), n is
the number of iterations, each iteration contains a swap
operation.

The quick local perturbation strategy, denoted as IGQ, is as
follows:(1) Randomly select two different jobs. (2) exchange
these two jobs and obtain a new sequence . If is
better than , replaces .Otherwise, remains
unchanged. (3) Continue the above steps (1), (2) until the
termination condition is met. The local perturbation strategy
based on swap operator is given in Algorithm 5.

1j
2 =temp temp

G. The quick global perturbation strategy

In traditional IG algorithm, simulated annealing acceptance
criterion is used to improve the diversity of the solution. In
order to expand the search neighborhood of the current
solution, we suggested a quick global perturbation strategy
based on half-swap, denoted as IGhalf-swap, in which time
complexity is also O(n2), and integrate it into the simulated
annealing stage. In this way, we can find a better solution
which is close to the global optimal solution more quickly.
After the disturbance operation, the acceptance criterial is
performed. If the new solution is better than the best one, it will
replace the best solution. Algorithm 6 illustrates the quick
global perturbation strategy based on half-swap.

Front

329

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Parameter settings

The different number of stages and jobs can be combined to
form different instances. We set the number of jobs as and the
number of stages as , where {20, 40, 60, 80, 100, 200,
300} and {5, 10}. For each combination, ten instances
are produced, so the test instances number is . The
processing times are generated uniformly distributed in
distribution range [1, 30], the number of machines in each stage
is produced in distribution range [1, 5], randomly, where the
energy consumption per unit time of idling, processing and
blocking are generated from the uniform distribution range [1,
3], [3, 5] and [5, 7], randomly.

For proving the performance of the proposed IGQ algorithm
and fair tests, the termination condition of all the algorithms is
the cpu running time, denoted as .

, , All test algorithms are
compiled and coded by C++ , the Visual Studio 2019, running
on Microsoft Windows 10, 2.60 GHZ Intel Core i7 Pentium
processor and a 16GB RAM memory. Each instance is repeated
for 5 times and the best one is selected.

B. Evaluation indicator
Due to the best true solution of BHFSP is unknown, we

utilize the relative percentage increment (RPI) to evaluate the
performance of all the algorithms. The calculation formula is as
given as follows.

 (16)

where is the minimum energy consumption value
obtained by all the algorithms, is the energy consumption
value generated by algorithm . Obviously, the algorithm which
has the smaller RPI is better than other algorithms.

From the objective analysis of BHFSP, we know that the
value of energy consumption is so large to make the difference
between the numerator and the denominator small. The value of
RPI obtained by all algorithms is also very small. Therefore, to
comprehensively and intuitively evaluating the proposed
algorithm, we compare not only the RPI value, but also the
average and minimum energy consumption(AVG and MIN for
short), respectively.

C. Comparisons of overall performance
We compare IGQ with 9 different algorithms. We first

compare our proposed IGQ with some classical swarm
intelligence algorithms, i.e., the GA [9], DABC [10], EMBO
[11], DPSO [12]. Then, we compare IGQ with a series of the
existing IG algorithms, i.e., the original IG [7], the improved
IGRS , IGT , IGTALL , and VBIH [8]. Because GA, DABC,
EMBO and DPSO are representative and highly recognized in
swarm intelligence algorithm, they all show their performance
advantages after long-term test, and the selected improved IG
algorithm also shows good performance in test, and the
published year of these comparative algorithms is relatively
recent. Therefore, we choose these algorithms as comparative
algorithms. About the termination limit time,

, we set 5 as the parameter CPU, all
compared algorithms have the same termination time. In

TABLE I and II, the best result of the comparative methods is
highlighted.

For 14 different instance sets, TABLE I and II list the
average and minimum values of the energy consumption
obtained by 10 compared algorithms. In addition, the RPI values
of all the algorithms are listed in the brackets in TABLE I and
II. we can see that IGQ has the best RPI in all test sets. When
comparing with other classical swarm intelligence optimization
algorithms, as seen in Table 1, IGQ algorithm has the smallest
average values for all tests. About the minimum values, the IGQ
can get 12 smallest values for 14 tests. In Table 2, IGQ can get
12/14 and 9/14 best average and minimum values when contrast
with other existing IG algorithms.

V. CONCLUSIONS

In this paper, we firstly use a mathematical model of energy
efficient BHFSP, then we develop a quick and effective IG
algorithm, namely IGQ to solve this problem. In IGQ, MME is
utilized to produce an initial solution, after the initialization, a
quick local perturbation strategy and global perturbation
strategy are suggested in this algorithm. The experiment shows
the superiority of our proposed IGQ.

The future research would develop more methods based on
the IG algorithm. We may study some new operators based on
swap. Similarly, multi-objective problems will be researched.
Besides, we may consider a distributed factories problem or
batching parts problem and further take the uncertainty
conditions into account, such as machine breakdowns, the due
date.

ACKNOWLEDGMENT
This work was jointly supported by National Natural Science

Foundation of China with grant No. 61803192, 61973203,
61966012, 61773192, 61603169, 61773246, and 71533001.
Thanks for the support of Shandong province colleges and
universities youth innovation talent introduction and education
program.

REFERENCES
[1] Rubén Ruiz, José Antonio Vázquez-Rodríguez. The hybrid flow shop

scheduling problem. European Journal of Operational Research, 2010,
205(1):1-18.

[2] Li J Q , Pan Q K , Wang F T . A hybrid variable neighborhood search for
solving the hybrid flow shop scheduling problem. Applied Soft
Computing Journal, 2014, 24:63-77.

[3] Li J Q , Pan Q K , Duan P Y . An Improved Artificial Bee Colony
Algorithm for Solving Hybrid Flexible Flowshop With Dynamic
Operation Skipping. IEEE Transactions on Cybernetics, 2016,
46(6):1311-1324.

[4] Liu S , Pei J , Cheng H , et al. Two-stage hybrid flow shop scheduling on
parallel batching machines considering a job-dependent deteriorating
effect and non-identical job sizes. Applied Soft Computing, 2019,
84:105701.

[5] Schulz S , Neufeld J S , Buscher U . A multi-objective iterated local search
algorithm for comprehensive energy-aware hybrid flow shop scheduling.
Journal of Cleaner Production, 2019, 224(JUL.1):421-434.

[6] Zhang B , Pan Q K , Gao L , et al. A Three-Stage Multiobjective Approach
Based on Decomposition for an Energy-Efficient Hybrid Flow Shop
Scheduling Problem. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2019, PP(99):1-16.

[7] Rubén Ruiz, Thomas Stützle. A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. European
Journal of Operational Research, 2007, 177(3):2033-2049.

330

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I. EXPERIMENTAL RESULTS OF ENERGY CONSUMPTION COMPARED WITH CLASSIC ALGORITHMS WHEN CPU = 5

Instance IGQ GA DABC EMBO DPSO

J×S AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN

20×5 10583.7(0.00) 7895 10600.1(0.01) 7918 10624.4(0.02) 8007 10614.3(0.01) 7870 11425.1(0.09) 8581

20×10 27898.1(0.00) 22953 28018.7(0.01) 22990 28003(0.02) 22982 27948.3(0.01) 22961 29332.9(0.05) 24114

40×5 18591(0.01) 13030 18945.6(0.04) 13431 19761.5(0.09) 14118 18839.5(0.03) 13168 20328(0.11) 15092

40×10 56959(0.01) 47190 57663(0.02) 48044 58940.1(0.05) 49178 57354(0.02) 47935 59446.5(0.05) 51338

60×5 43269(0.00) 33478 43819.3(0.02) 33946 44258.9(0.03) 34625 43535(0.01) 33646 44354.9(0.03) 34338

60×10 84587.2(0.01) 60377 86211.6(0.03) 61576 89217.2(0.07) 64227 85713.6(0.02) 60997 88574.8(0.05) 62015

80×5 55250.1(0.00) 27474 56067.8(0.02) 28002 56742.4(0.04) 28727 55549.3(0.01) 27782 56592(0.03) 28410

80×10 119137(0.01) 81925 123869.5(0.05) 85828 126837.2(0.09) 88624 120785.6(0.02) 83899 123582.3(0.04) 83237

100×5 64937.9(0.00) 31413 66094.7(0.03) 32512 67369.1(0.05) 34609 65460.4(0.02) 32193 66323.1(0.03) 33702

100×10 149353.5(0.01) 111465 157099.9(0.07) 117072 162530.7(0.11) 119878 152704.2(0.04) 113305 154705.7(0.04) 113537

200×5 143562.7(0.01) 60608 150717.5(0.07) 65860 152821.6(0.09) 68022 146281.2(0.04) 64081 146853.6(0.14) 63627

200×10 302144.5(0.01) 222839 327796.3(0.1) 240067 336635.3(0.13) 240855 315935.2(0.05) 234505 312026.4(0.03) 224800

300×5 250643.4(0.00) 151898 257671.3(0.03) 152914 257787.8(0.03) 152737 252998.2(0.01) 151904 252950.1(0.05) 151957

300×10 490051.5(0.00) 332151 525004.7(0.08) 341201 526498.5(0.08) 341669 507247.2(0.04) 336586 499511.8(0.02) 334636

AVG 129783.5(0.006) 136398.6(0.041) 138430.6(0.065) 132926.1(0.023) 133286.2(0.054)

TABLE II. EXPERIMENTAL RESULTS OF ENERGY CONSUMPTION COMPARED WITH OTHER EXISTING IG ALGORITHMS WHEN CPU = 5

Instance IGQ IGA IGRS IGT IGTALL VBIH

J×S AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN AVG(RPI) MIN

20×5 10583.7(0.00) 7895 10614.5(0.01) 7895 10591.8(0.01) 7950 10605(0.01) 7941 10599.8(0.01) 7906 10595.5(0.02) 7895

20×10 27898.1(0.00) 22953 27945.3(0.01) 22953 27940.6(0.01) 22982 27936.1(0.01) 22953 27939.2(0.01) 22970 27943.6(0.00) 22953

40×5 18591(0.01) 13030 18853.8(0.03) 13563 18933.1(0.03) 13665 18859.3(0.03) 13274 18870.7(0.03) 13621 18771.7(0.03) 13404

40×10 56959(0.01) 47190 57344.7(0.01) 48093 57445.6(0.02) 48092 57281.7(0.01) 47975 57196(0.01) 47731 57103.8(0.01) 47725

60×5 43269(0.00) 33478 43436.6(0.01) 33613 43565.9(0.01) 33837 43371.1(0.01) 33639 43426.5(0.01) 33770 43354.7(0.01) 33589

60×10 84587.2(0.01) 60377 85547.5(0.02) 60964 85846.9(0.02) 60847 85292.4(0.01) 60953 85239.7(0.01) 60730 85011.1(0.01) 60730

80×5 55250.1(0.00) 27474 55497.5(0.01) 27795 55570.1(0.01) 27825 55356.2(0.00) 27468 55402.3(0.01) 27638 55318.1(0.00) 27554

80×10 119137(0.01) 81925 120091(0.02) 82199 120432.1(0.02) 82550 119790.9(0.01) 82705 119778.9(0.01) 82495 119231.9(0.01) 82007

100×5 64937.9(0.00) 31413 65329.1(0.01) 32036 65413.1(0.01) 31671 65042.4(0.01) 31732 65068.3(0.01) 31418 64984.4(0.01) 31515

100×10 149353.5(0.01) 111465 150967.8(0.02) 112098 151237.6(0.02) 112477 149890.5(0.01) 111257 149532.9(0.01) 111615 149420.7(0.01) 111171

200×5 143562.7(0.01) 60608 144762.2(0.02) 62218 144986.8(0.02) 62501 143422.4(0.01) 60591 143540.7(0.01) 61125 143564(0.01) 61356

200×10 302144.5(0.01) 222839 306334.3(0.02) 222944 306545.3(0.02) 222943 302848.2(0.01) 222525 302946.4(0.01) 221619 302687.7(0.01) 221771

300×5 250643.4(0.00) 151898 251379.2(0.01) 151912 251213.1(0.00) 151904 250544.5(0.01) 151898 250563.7(0.00) 151957 250601.8(0.00) 151898

300×10 490051.5(0.00) 332151 494387.8(0.01) 333824 493297.2(0.01) 333098 490602.8(0.00) 332326 490726.3(0.00) 332126 490340.8(0.00) 332126

AVG 129783.5(0.006) 130892.2(0.015) 130929.9(0.015) 130060.3(0.011) 130059.4(0.01) 129923.6(0.008)

[8]

with blocking. International Journal of Production Economics, 2004, 87,
39-48.

[9] Nejati M , Mahdavi I , Hassanzadeh R , et al. Multi-job lot streaming to
minimize the weighted completion time in a hybrid flow shop scheduling
problem with work shift constraint. International Journal of Advanced
Manufacturing Technology, 2014, 70(1-4):501-514.

[10] Pan Q K , Wang L , Li J Q , et al. A novel discrete artificial bee colony
algorithm for the hybrid flowshop scheduling problem with makespan
minimisation. Omega, 2014, 45(jun.):42-56.

[11] Zhang B , Pan Q K , Gao L , et al. An effective modified migrating birds
optimization for hybrid flowshop scheduling problem with lot streaming.
Applied Soft Computing, 2017, 52:14-27.

[12] Marichelvam M K , Geetha M , mür Tosun. An improved particle swarm
optimization algorithm to solve hybrid flowshop scheduling problems
with the effect of human factors a case study. Computers & Operations
Research, 2019, 114:104812.

[13] Ztop H , Tasgetiren M F , Deniz Türsel Eliiyi, et al. Metaheuristic
algorithms for the hybrid flowshop scheduling problem. Computers &
Operations Research, 2019, 111:177-196.

331

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:40 UTC from IEEE Xplore. Restrictions apply.

		2021-05-26T09:40:51-0400
	Preflight Ticket Signature

