

An improved iterated greedy algorithm for the
distributed flow shop scheduling problem with

sequence-dependent setup times
 1st Xue Han

School of Computer Science
Liaocheng University

Liaocheng, China
1979124154@qq.com

2nd* Yuyan Han
School of Computer Science

Liaocheng University
Liaocheng, China

hanyuyan@lcu-cs.com

3rd Yi-ping Liu
The College of Computer Science

and Electronic Engineering
Hunan University
Changsha, China

yiping0liu@gmail.com

4th Quan-ke Pan
School of Mechatronic

Engineering and Automation
Shanghai University

Shanghai, China
panquanke@mail.neu.edu.cn

5th Hao-xiang Qin
School of Computer Science

Liaocheng University
Liaocheng, China

987352978@qq.com

6th Junqing Li
School of Computer Science,
Shandong Normal University

Jinan, China
lijunqing@lcu-cs.com

Abstract In various flow shop scheduling problems, it is very
common that a large-scale production is done. Under this
situation, more factories are of more practical interest than a
factory. Thus, the distributed permutation flow shop scheduling
problems (DPFSPs) have been attracted attentions by researchers.
However, the DPFSP is more complicated than the traditional flow
shop scheduling problems. It considers not only the processing
order of the jobs, but also how to distribute the jobs to multiple
factories for parallel processing. In addition, the sequence-
dependent setup time (SDST) constraint of machines is taken into
account to well study the above DPFSP with SDST. This paper
presents a simple and effective iterated greedy algorithm. It is
proposed to replace the traditional insertion-based local search
with exchange-based local search, which greatly improves the
search efficiency. The proposed new iterated greedy (NIG)
algorithm is applied to test instances, and compares with the state-
of-the-art algorithms. Our empirical results demonstrate that the
proposed algorithm outperforms the compared algorithms and
can obtain the best solution of DPFSP.

Keywords distributed permutation flow shop, iterated
greedy algorithm, local search, swap

I. INTRODUCTION

With the continuous development of global economy, a
company often needs several production centers, it is necessary
to set up a distributed production mode [1]. In recent years, the
distributed permutation flow shop problem (DPFSP) has
gradually attracted much attentions by researchers. DPFSP can
be described as follows: a total of jobs need to be processed
in factories, each factory contains serial machines, each
factory can independently complete the processing of the job.
DPFSP was first proposed by Naderi and Ruiz [1], who used
iterated greedy algorithms to solve DPFSP with makespan
criteria. They proposed six different mixed integer linear
programming (MILP) models, and two simple factory

assignment rules together with 14 heuristics based on the
dispatching rules, the effective constructive heuristics and
variable neighborhood descent methods. Bargaoui et al.
designed a CRO algorithm with good single point crossover and
effective greedy strategy embedding. The algorithm uses an
effective NEH heuristic method to generate initial molecular
groups [3]. Fernandez-Viagas and Perez-Gonzalez proposed 18
constructive heuristic methods and an improved iterated
algorithm to obtain high-quality solutions [4]. Meng et al.
developed three meta-heuristic methods to solve the DPFSP
with customer order constraints [5]. In [6], Jing et al. proposed
an iterated greedy (IG) algorithm with free time insertion
evaluation to solve DPFSP with time window.

In practical production, different jobs will face operations
such as tool replacement and equipment inspection when they
are processed on the same machine. The time spent by these
operations is often not only related to the job to be processed,
but also related to the job previously processed on the
submachine. Therefore, a sequence-dependent setup times
(SDST) will be generated. About SDST / DPFSP, Huang gave a
complete description in [2] and proposed an improved IG
algorithm to solve this problem. Later, for the same problem,
Huang integrated three constructive heuristic methods into
discrete artificial bee colony (DABC) algorithm to generate
good scheduling solutions [7].

In this paper, the iterated greedy (IG) algorithm with
excellent performance in DPFSP is selected. Compared with
other algorithms based on metaphor or inspired by nature, the
IG algorithm is simple in structure and easy to understand [15].
IG algorithm is used in the study of multi-objective flow shop
scheduling problem after continuous expansion and
improvement [9]. In References, IG algorithm was applied to the
no-idle flow shop scheduling problem [10]. In addition the IG
with taboo reconstruction strategy is used to solve the FSP with

332

11th International Conference on Information Science and Technology (ICIST)
Chengdu, China, May 21-23, 2021

978-1-6654-1266-7/21/$31.00 ©2021 IEEE

20
21

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
fo

rm
at

io
n

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
 (I

C
IS

T)
 |

97
8-

1-
66

54
-1

26
6-

7/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IS
T5

26
14

.2
02

1.
94

40
59

1

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

no-wait [11]. Ruiz improves the performance of IG algorithm by
improving initialization, destruction, construction and local
search [12]. Karabulut proposed an IG algorithm based on the
temperature calculation formula as the acceptance criterion, and
hybridized it with a random search algorithm [13]. Li et al.
Proposed a new simulated annealing algorithm with four domain
structures [14]. Recently, Huang proposed a restart scheme with
six different operators in [2].

Our contribution is that an improve IG algorithm is
proposed, in which the key factory operation exchange strategy
and LS-N method based on the exchange strategy are adopted to
replace the insertion strategy used in the traditional IG
algorithm. Through comparison experiments with other
algorithms, it is proved that the performance of the proposed
algorithm is significantly improved.

II. THE SDST/DPFSP PROBLEM

SDST/DPFSP described as follows: There are jobs,
, which need to be processed in identical

factories, , and each factory has

machines, . Each job can be

processed in any factory . The job is processed on the machine
in the order from the first machine to the last machine, and the
factory cannot be replaced during processing.

The processing time of Job on machine is .

When Job is on machine , when is the previous Job

processed on the machine, SDST is . Each machine can

only process one Job at any time, and one Job can only be
processed in the same factory. Once a factory is selected, the
factory cannot be replaced during processing. All operations are
independent, and all factories start processing from 0 when
processing the Job.

The purpose of SDST / DPFSP in this paper is to assign jobs
reasonably to the factory and find a job sequence to minimize
makespan (). The mathematical model of the problem is
described as follows:

Notations:
: Number of factories.

: Number of machines in each factory.
: Number of jobs needed to be processed.

: The set of jobs to be processed.

: The set of m machines, where is the

 machine used to complete the process of jobs,
.

: The set of parallel factories, where

is the factory from set , .

: The operation of job on machine .

 : The processing time of job on machine .
: The setup time of job on machine , When the job

is the first job processed on machine iM , then .

 : The start time of .

 : The complete time of job on machine .

: The start time of the job of factory on machine
.

: The complete time of the job of factory on

machine .
 : A fairly large positive integer.

 : The completion time of all the jobs.

Decision variables:
: when job is the job processed in factory on

machine , the value of the decision variable is 1, otherwise

it is 0.
: when job is processed in factory , the value of the

decision variable is 1, otherwise it is 0.
Objective:
Min (1)

Subject to:

 (2)

 (3)

(4)
 (5)

(6)

(7)

(8)
 (9)

(1 0)

(1 1)

 (12)

Constraint (1) indicates that the indicator of the problem
studied in this paper is to minimize makespan. Constraint (2)
means that each job can only be processed on one machine in a
factory at a time, and constraint (3) means that each machine can
only process one job at a time. Constraint (4) states that the
processing of operations on the machine can only be performed
sequentially, and the processing time cannot be overlapped.
Constraint (5) stipulates that the processing sequence of the job
cannot be changed. Constraint (6) describes the start time and
completion time of a workpiece processing. Constraint (7)

333

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

represents the start time must be equal or greater than the
completion time of two adjacent jobs on a certain machine.
Constraint (8) describes the constraints between the start time
and completion time of the job including preparation time.
Constraint (9) refers to the situation when the job is first
processed on the machine. In constraint (10), the completion
time of a job is the sum of the start time and processing time of
the job. Constraints (11) and (12) indicate that the start time of
each machine and each job is not less than 0, respectively.

Next, we use an example to illustrate how to calculate
makespan. The example includes two factories (), two
machines () and five jobs (). Table 1 and Table 2
show the processing time and setup time. It is assumed that a
solution is that jobs 1, 2 and 4 are processed in factory 1, and
jobs 3 and 5 are processed in factory 2. The value of decision
variables can be obtained as follows:

, ,

The remaining decision variables are 0.

The objective value is = 333. The scheduling Gantt is
shown in Fig. 1.

TABLE I. PROCESSING TIMES OF JOBS ON MACHINES AND

TABLE II. SEQUENCE-DEPENDENT SETUP TIMES OF JOBS ON MACHINES

 AND

Fig. 1. Gantt Chart for the example problem

III. PROPOSED IG ALGORITHM FOR THE SDST/DPFSP

In this paper, we propose an improved iterated greedy
algorithm with simple structure. IG algorithm has shown
excellent performance in solving the flow shop scheduling
problem [15]. For example, Ding and Song used tabu-based
reconstruction strategy to enhance the search ability of the
algorithm in [16]. Ruiz and Pan improved the local search,
Destruction and Construction of IG algorithm, which greatly
improved the performance of the algorithm [10]. The traditional
IG algorithm uses a heuristic method, generally NEH, to create
the initial solution. The iterative content includes four parts:
destruction, reconstruction, local search and acceptance criteria.
When the termination condition is satisfied, the iteration stops.

The traditional IG algorithm framework is as follows:

Algorithm 1 The traditional IG algorithm
01: Begin:
02: Set the parameters:
03:

04:

05: while termination criterion is not satisfied do
06:

07:

08:

09:

10: Endwhile
11: End

At the same time, we use the flowchart to show the running
process of the IG algorithm, as shown in Fig. 2:

Fig. 2. IG algorithm flow chart

A. Initial Solution

The generation of initial solution is the first step of the
program, and its quality is crucial. We retained NEH2_en in [12]
to generate the initial solution that meets the requirements.
Firstly, all jobs are sorted in descending order according to the
sum of processing time on all machines to generate sequence

334

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

seeds, . Then, the first job in the sequence is
assigned to the first factory, and the second to the second
factory. After all the factories are assigned, the remaining jobs
are taken out one by one, and then the best position is tried and
found in all sequences for insertion. After the insertion
operation, the former or latter job of the insertion position is
taken out, and tested at all positions of the same factory, and the
insertion operation is performed at the optimal position. In
addition, referring to the previous DPFSP literature, all the
insertion processes adopt the well-known Taillard acceleration
of the insertion neighborhood to improve the insertion speed.

The pseudocode of NEH2_en is as follows:

Algorithm 2 NEH2_en
01: Begin:

02: Compute is the total

processing time of job

03: sort jobs in descending order of

04: for to do

05: Assign job in to plant

06: endfor
07: for to do

08: for to do

09: Test in all possible positions in % Taillard

acceleration is applied
10: Get the lowest makespan in factory

11: Get the position of is

12: endfor
11:

12: Insert in the sequence at position

13: Extract at random job from position or

*+1lpos from

14: Insert job in at the position resulting in the

lowest makespan
15: endfor
16: Output

B. Local search

Local search in IG algorithm is an important factor to
determine the quality of solution. Insertion operation is
generally used in the local search of traditional IG algorithm. For
example, for the case of jobs, insertion attempts are generally
required locations, and the time complexity is

. If the selected location is , the number of jobs that need to be
moved is , and the time complexity becomes

. If the result of the execution does not
make the target value improved, the above operation will be
repeated until the target value is improved, which makes the
number of effective executions in a certain period of time
reduced. Therefore, in this paper, we abandon the previous local
operation dominated by the insertion strategy, and choose the

swapping strategy based on the previous LS_3 [12]. We call it
LS_N, and its time complexity is only . The operation
steps of LS_N are as follows.

Firstly, find out the key factories in all factories, that is, the
factory with the largest makespan, and then find out the factory
with the largest makespan except the key factory. Then, two jobs
are randomly selected in two factories to test the makespan

 after the exchange. If the makespan is less than the

original maxC , the exchange is retained. Otherwise, the solution
remains unchanged. Then continue to select the job until all the
jobs in the key factory are traversed. LS_N algorithm framework
is as follows:

Algorithm 3 LS_N
01: Begin
02: Find the critical factory with the

03: Find the critical factory with the % is

a value only less than

04:
05: While do % is the number of jobs in
factory

06
06: randomly selected job in

07: randomly selected job in

08: Test job and for swap
is the makespan of after swapping in all factories

10: if

11:
12:
13: elseif
14: Swap job and

15:

16: Find the critical factory with the

17: Find the critical factory with the

18:
19: endif
20: endwhile
21: Output

C. Destruction, construction and acceptance criteria

In the loop phase of IG algorithm, we repeat the four steps
of Destruction, Construction, local search and acceptance
criteria until the quality of the solution is improved. In the
Destruction phase, first select a factory containing
jobs, then randomly select a job from it, add it to the sequence

 (stored deleted jobs), and delete the job from the original
sequence. Repeat the last operation times to get two
sequences, sequence with jobs and sequence (store
the remaining sequence of jobs without changing the sequence)
with jobs.

The Destruction pseudo-code is given in Algorithm 4.

335

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 Destruction
01: Begin
02: Procedure Destruction(,)

03:

04:
05: while do
06:

07: if then
08:

09:

10: Delete job from

11:
12: endif
13: endwhile
14: Output

 The reconstruction phase is, firstly, the first job is taken out
from , and it is tried in all positions until the best insertion
position is found, that is, the position with the smallest
makespan. Then, the second job is taken out, and the above

 are taken out
and inserted.

The Construction pseudocode is given in algorithm 5.
Algorithm 5 Construction
01: Begin
02: Procedure Construction (,)
03: for to

04: the job of

05: for to do

06:

07: Get the lowest makespan in factory

08: Get the position of is

09: endfor
10:

11: Insert in the sequence at position

12: endfor
13:
14: Output

Since the code referenced in this paper is the code in Ruiz '
s [12], the code in the ' Receiving Criteria ' section still chooses
Ruiz and Stützle (2007), a constant temperature acceptance
criterion based on parameter , as follows:

 (14)

T needs calibration, but has shown robustness (most values
are not zero and not too high).

IV. EXPERIMENT AND ANALYSIS

The performance of the NIG algorithm is evaluated using
270 examples. In the example, , and is the number of

jobs, machines and factories, respectively. Their values are as
follows: , ,

. We randomly combine their values to
generate instances of different sizes. In the example, the data are
generated in a random way. The distribution range of processing
time is [1, 99), and the value range of preparation time is

. In this experiment, we repeat
each instance five times, and each instance takes the minimum
value in five runs. The index of this experiment is to minimize
makespan ().

All test algorithms are compiled and coded by Visual Studio
2019 ,C++, running on Microsoft Windows 10 operating
system, 16GB DDR4 memory and 1.00 GHZ Intel Core i5 -
1035G1 processor.

A. Computational evaluation

The DPFSP is a NP-hard problem, thus we cannot obtain
the optimal solution. Therefore, in this paper, we will use the
performance evaluation method of the single objective
optimization algorithm commonly used in the literature to
evaluate the performance of the algorithm, namely the
percentage relative deviation RPI. The calculation method of
RPI is as follows:

 (15).

Among them, is the minimum makespan of the

algorithm running five times in an instance, and is the
minimum makespan of all the algorithms running five times in
this instance. It can be seen from the formula that in the
comparison algorithm, the better the performance is, the closer
the RPI is to 0, and the algorithm with RPI equals to 0 has the
best performance in the current comparison algorithm.

In this paper, five algorithms are selected to compare with
NIG, namely discrete artificial bee colony algorithm (DABC)
[17], artificial chemical reaction optimization (CRO) [3],
discrete differential evolution algorithm (DDE) [18], and
improved iterated greedy algorithm IGA [12] and IGR [2]. For
the 270 examples mentioned above, all algorithms are executed
five times in comparison. In order to obtain fair results, we set
the termination condition as:

 (16)

n and are the number of jobs and the number of machines
in the current instance respectively.

B. RPI comparison

Table 3 shows the RPI under different instances, and the
average RPI of each algorithm under different factory numbers.
According to the above formula for calculating RPI, the
performance of NIG algorithm is significantly better than that of
the other five algorithms. With the increase of examples, the
performance of DABC, DDE and IGA algorithms gradually
deteriorates, while the performance of IGR gradually improves.
Overall, the performance of DDE and IGR is good, but the
performance of NIG is the best.

336

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

TABLE III. RPI OF COMPARISON ALGORITHM WHEN CPU = 10

Factory J*M DABC CRO DDE IGA IGM NIG

f=2

100*5 0.054 0.049 0.015 0.039 0.018 0
100*8 0.053 0.077 0.015 0.079 0.046 0

100*10 0.082 0.064 0.021 0.050 0.031 0
200*5 0.062 0.028 0.022 0.053 0.030 0
200*8 0.067 0.035 0.010 0.052 0.033 0

200*10 0.067 0.053 0.009 0.069 0.039 0
300*5 0.051 0.037 0.010 0.046 0.037 0
300*8 0.051 0.038 0.011 0.064 0.033 0

300*10 0.055 0.028 0.008 0.037 0.034 0
400*5 0.055 0.040 0.018 0.081 0.041 0
400*8 0.043 0.028 0.010 0.060 0.033 0

400*10 0.037 0.026 0.011 0.040 0.029 0
500*5 0.038 0.030 0.015 0.044 0.024 0
500*8 0.043 0.024 0.012 0.047 0.031 0

500*10 0.040 0.031 0.005 0.038 0.028 0
mean 0.053 0.039 0.013 0.053 0.032 0

f=3

100*5 0.052 0.057 0.003 0.043 0.031 0
100*8 0.105 0.097 0.026 0.070 0.060 0

100*10 0.073 0.082 0.021 0.055 0.034 0
200*5 0.046 0.042 0.018 0.046 0.024 0
200*8 0.076 0.061 0.005 0.066 0.038 0

200*10 0.066 0.055 0.009 0.073 0.041 0
300*5 0.060 0.036 0.006 0.032 0.022 0
300*8 0.043 0.057 0.007 0.062 0.043 0

300*10 0.054 0.031 0.004 0.051 0.033 0
400*5 0.036 0.025 0.008 0.040 0.025 0
400*8 0.057 0.042 0.004 0.055 0.035 0

400*10 0.055 0.047 0.001 0.044 0.029 0
500*5 0.026 0.029 0.006 0.035 0.019 0
500*8 0.038 0.043 0.000 0.061 0.036 0.001

500*10 0.043 0.021 0.005 0.047 0.029 0
mean 0.055 0.048 0.008 0.052 0.033 0.00009

f=4

100*5 0.058 0.049 0.010 0.040 0.019 0
100*8 0.067 0.086 0.019 0.057 0.024 0

100*10 0.082 0.085 0.026 0.047 0.039 0
200*5 0.054 0.047 0.008 0.034 0.017 0
200*8 0.051 0.065 0.0003 0.061 0.039 0

200*10 0.083 0.071 0.008 0.049 0.040 0
300*5 0.068 0.055 0.013 0.055 0.026 0
300*8 0.065 0.047 0.011 0.078 0.036 0

300*10 0.066 0.036 0.006 0.047 0.033 0
400*5 0.039 0.044 0.009 0.037 0.016 0
400*8 0.073 0.042 0.003 0.048 0.030 0

400*10 0.060 0.046 0.006 0.050 0.035 0
500*5 0.053 0.038 0.016 0.054 0.030 0
500*8 0.066 0.037 0.018 0.052 0.028 0

500*10 0.056 0.047 0.028 0.066 0.040 0
mean 0.063 0.053 0.012 0.052 0.030 0.000

f=5

100*5 0.054 0.027 0.009 0.018 0.007 0
100*8 0.114 0.080 0.026 0.053 0.029 0

100*10 0.116 0.115 0.060 0.061 0.051 0
200*5 0.074 0.083 0.040 0.081 0.041 0
200*8 0.095 0.069 0.000 0.056 0.045 0.005

337

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

200*10 0.102 0.072 0.020 0.073 0.046 0
300*5 0.057 0.039 0.007 0.048 0.015 0
300*8 0.083 0.062 0.021 0.063 0.035 0

300*10 0.107 0.069 0.006 0.073 0.044 0
400*5 0.064 0.055 0.004 0.060 0.027 0
400*8 0.077 0.054 0.017 0.055 0.029 0

400*10 0.078 0.053 0.016 0.061 0.039 0
500*5 0.062 0.046 0.014 0.064 0.030 0
500*8 0.070 0.043 0.007 0.063 0.032 0

500*10 0.080 0.041 0.022 0.066 0.042 0
mean 0.082 0.060 0.018 0.060 0.034 0.000348

f=6

100*5 0.101 0.100 0.032 0.052 0.041 0
100*8 0.116 0.072 0.024 0.059 0.042 0

100*10 0.100 0.103 0.030 0.056 0.046 0
200*5 0.087 0.074 0.025 0.055 0.030 0
200*8 0.099 0.065 0.014 0.058 0.035 0

200*10 0.093 0.083 0.058 0.048 0.042 0
300*5 0.071 0.046 0.040 0.056 0.024 0
300*8 0.090 0.059 0.034 0.070 0.033 0

300*10 0.099 0.065 0.058 0.064 0.050 0
400*5 0.083 0.054 0.061 0.063 0.029 0
400*8 0.084 0.049 0.045 0.049 0.031 0

400*10 0.095 0.047 0.028 0.067 0.034 0
500*5 0.069 0.045 0.025 0.055 0.025 0
500*8 0.074 0.050 0.040 0.050 0.030 0

500*10 0.078 0.056 0.032 0.070 0.039 0
mean 0.089 0.065 0.036 0.058 0.035 0.000

f=7

100*5 0.112 0.031 0.016 0.056 0.027 0
100*8 0.082 0.079 0.049 0.060 0.014 0

100*10 0.123 0.086 0.043 0.044 0.036 0
200*5 0.114 0.063 0.024 0.059 0.029 0
200*8 0.120 0.095 0.024 0.073 0.037 0

200*10 0.102 0.082 0.048 0.050 0.039 0
300*5 0.090 0.059 0.043 0.128 0.029 0
300*8 0.127 0.071 0.048 0.076 0.043 0

300*10 0.102 0.066 0.041 0.066 0.041 0
400*5 0.073 0.047 0.039 0.039 0.018 0
400*8 0.101 0.053 0.052 0.064 0.030 0

400*10 0.104 0.043 0.018 0.070 0.034 0
500*5 0.067 0.044 0.052 0.052 0.018 0
500*8 0.074 0.053 0.036 0.061 0.027 0

500*10 0.090 0.062 0.046 0.073 0.039 0
mean 0.099 0.062 0.039 0.065 0.031 0.000

To identify the acquired data more clearly, we also use
confidence intervals to analyze the data, as shown in Fig. 3. It
can be seen from the graph that the performance of NIG
algorithm is significantly better than other algorithms. In
addition, DDE algorithm and IGR algorithm are also better,
while DABC and IGA are relatively worse.

Next, we further analyze the convergence of the algorithm.
We have selected four algorithms, DDE, IGA, IGR, and NIG,
which perform well in the problem, as shown in Fig. 4. In order
to make the expression clearer, we have selected three question
examples of 300*5*3,400*5*6, 500*5*6. Since the termination
condition of the programming operation is

, we can change the running time of

the algorithm by changing the value of the CPU. Therefore, the
X axis in Fig. 3 is the value of the CPU, the optimal solution
(makespan) obtained by running the algorithm five times is the
Y axis. It can be seen from the three figures a, b, and c that DDE
is easy to fall into the local optimum. The performance of the
IGR algorithm gradually increases with the increase of the
instance size. The NIG algorithm performs best in these four
algorithms.

338

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Confidence Interval Diagram of the Algorithm with CPU = 10

(a) 300*5*3

(b) 400*5*6

(c) 500*5*6

Fig. 4. Convergence curve of DDE, IGA, IGR, NIG

V. CONCLUSIONS

In this paper, the DPFSP with sequence-dependent
preparation time is studied and solved by the improved IG
algorithm. Firstly, the mathematical model of SDST / DPFSP is
described. Then, this paper proposes a local search based on
exchange strategy, which improves the search efficiency.
Through compared with other existing algorithms, the
performance has been significantly improved.

In the future, we will do more research on problem-oriented
strategies, focus more on algorithm thinking and consider
different optimization objectives. For example, the green energy
saving index is added to the problem of distributed displacement
flow shop, and more attention is paid to the thinking of problems
related to real life.

ACKNOWLEDGMENT

This work was jointly supported by National Natural
Science Foundation of China with grant No. 61803192,
61973203, 61966012, 61773192, 61603169, 61773246, and
71533001. Thanks for the support of Shandong province
colleges and universities youth innovation talent introduction
and education program.

REFERENCES
[1] B. Naderi, and R. Ruiz . The distributed permutation flowshop

scheduling problem Computers& Operations Research 37.4(2010):754-
768.

[2] J. P. Huang , Q. K. Pan , and L. Gao . An effective iterated greedy method
for the distributed permutation flowshop scheduling problem with
sequence-dependent setup times in Swarm and Evolutionary
Computation (2020):100742.

[3] Bargaoui, Hafewa , O. Belkahla Driss , and Ghédira, Khaléd. A novel
chemical reaction optimization for the distributed permutation flowshop
scheduling problem with makespan criterion Computers & Industrial
Engineering 111.sep.(2017):239-250.

[4] Fernandez-Viagas, Victor , P. Perez-Gonzalez , and J. M. Framinan . The
distributed permutation flow shop to minimise the total
flowtime Computers & Industrial Engineering 118.APR.(2018):464-
477.

[5] T. Meng, Q. K. Pan, and L. Wang. A distributed permutation flowshop
scheduling problem with the customer order constraint Knowledge-
Based Systems. 184. 104894. 10.1016/j.knosys.2019.104894.

[6] X. L. Jing, Q. K. Pan, L. Gao, and Y. L. Wang. An effective iterated
greedy algorithm for the distributed permutation flowshop scheduling
with due windows Applied Soft Computing, 96, 106629.

[7] J. P. Huang, Q. K. Pan, Z. H. Miao, and L. Gao. Effective constructive
heuristics and discrete bee colony optimization for distributed flowshop
with setup times Engineering Applications of Artificial Intelligence, 97,
104016.

[8] Kenneth, and Sörensen. Metaheuristics the metaphor
exposed International Transactions in Operational Research (2015).

[9] R. Ruiz, and T. Stützle. An Iterated Greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives European Journal of Operational
Research 187.3(2008):1143-1159.

[10] R. Ruiz, Q. K. Pan. An effective iterated greedy algorithm for the mixed
no-idle permutation flowshop scheduling problem Omega: The
international journal of management science, 44(Apr.2014), 41-50.

[11] D. Yüksel, M. F. Tagetiren, L. Kandiller , and L. Gao. An energy-
efficient bi-objective no-wait permutation flowshop scheduling problem
to minimize total tardiness and total energy consumption Computers &
Industrial Engineering, 145, 106431, 2020.

339

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

[12] R. Ruiz, Q. K. Pan , and B. Naderi . Iterated Greedy methods for the
distributed permutation flowshop scheduling
problem Omega 83.MAR.(2019):213-222.

[13] K. Korhan . A Hybrid Iterated Greedy Algorithm for Total Tardiness
Minimization in Permutation Flowshops Computers & Industrial
Engineering 98.aug.(2016):300-307.

[14] W. Li, J. Li, K. Gao, Y. Han, and Q.Sun. Solving robotic distributed
flowshop problem using an improved iterated greedy
algorithm International Journal of Advanced Robotic Systems,
(2019) 16(5), 172988141987981-.

[15] R. Ruiz, and T. Stützle. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem European Journal of
Operational Research 177. 3(2007):2033-2049.

[16] J. Y. Ding C. Raymond R. Zhang. An improved iterated greedy
algorithm with a Tabu-based reconstruction strategy for the no-wait
flowshop scheduling problem Applied Soft Computing 30(2015):604-
613.

[17] J. Pan, W. Zou, J. Duan, A discrete artificial bee colony for distributed
permutation flowshop scheduling problem with total flow time
minimization 2018 37th Chinese Control Conference (CCC), Wuhan,
2018, 8379-8383.

[18] G. H. Zhang , K. Xing , and F. Cao . Discrete differential evolution
algorithm for distributed blocking flowshop scheduling with makespan
criterion Engineering Applications of Artificial
Intelligence 76.NOV.(2018):96-107.

340

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on September 27,2021 at 02:56:50 UTC from IEEE Xplore. Restrictions apply.

		2021-05-26T11:40:25-0400
	Preflight Ticket Signature

