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Abstract In various flow shop scheduling problems, it is very 
common that a large-scale production is done. Under this 
situation, more factories are of more practical interest than a 
factory.  Thus, the distributed permutation flow shop scheduling 
problems (DPFSPs) have been attracted attentions by researchers. 
However, the DPFSP is more complicated than the traditional flow 
shop scheduling problems. It considers not only the processing 
order of the jobs, but also how to distribute the jobs to multiple 
factories for parallel processing. In addition, the sequence-
dependent setup time (SDST) constraint of machines is taken into 
account to well study the above DPFSP with SDST. This paper 
presents a simple and effective iterated greedy algorithm. It is 
proposed to replace the traditional insertion-based local search 
with exchange-based local search, which greatly improves the 
search efficiency. The proposed new iterated greedy (NIG) 
algorithm is applied to test instances, and compares with the state-
of-the-art algorithms. Our empirical results demonstrate that the 
proposed algorithm outperforms the compared algorithms and 
can obtain the best solution of DPFSP.  

Keywords distributed permutation flow shop, iterated 
greedy algorithm, local search, swap 

I. INTRODUCTION  

With the continuous development of global economy, a 
company often needs several production centers, it is necessary 
to set up a distributed production mode [1]. In recent years, the 
distributed permutation flow shop problem (DPFSP) has 
gradually attracted much attentions by researchers. DPFSP can 
be described as follows: a total of  jobs need to be processed 
in  factories, each factory contains  serial machines, each 
factory can independently complete the processing of the job. 
DPFSP was first proposed by Naderi and Ruiz [1], who used 
iterated greedy algorithms to solve DPFSP with makespan 
criteria. They proposed six different mixed integer linear 
programming (MILP) models, and two simple factory 

assignment rules together with 14 heuristics based on the 
dispatching rules, the effective constructive heuristics and 
variable neighborhood descent methods. Bargaoui et al. 
designed a CRO algorithm with good single point crossover and 
effective greedy strategy embedding. The algorithm uses an 
effective NEH heuristic method to generate initial molecular 
groups [3]. Fernandez-Viagas and Perez-Gonzalez proposed 18 
constructive heuristic methods and an improved iterated 
algorithm to obtain high-quality solutions [4]. Meng et al. 
developed three meta-heuristic methods to solve the DPFSP 
with customer order constraints [5]. In [6], Jing et al. proposed 
an iterated greedy (IG) algorithm with free time insertion 
evaluation to solve DPFSP with time window. 

In practical production, different jobs will face operations 
such as tool replacement and equipment inspection when they 
are processed on the same machine. The time spent by these 
operations is often not only related to the job to be processed, 
but also related to the job previously processed on the 
submachine. Therefore, a sequence-dependent setup times 
(SDST) will be generated. About SDST / DPFSP, Huang gave a 
complete description in [2] and proposed an improved IG 
algorithm to solve this problem. Later, for the same problem, 
Huang integrated three constructive heuristic methods into 
discrete artificial bee colony (DABC) algorithm to generate 
good scheduling solutions [7]. 

In this paper, the iterated greedy (IG) algorithm with 
excellent performance in DPFSP is selected. Compared with 
other algorithms based on metaphor or inspired by nature, the 
IG algorithm is simple in structure and easy to understand [15]. 
IG algorithm is used in the study of multi-objective flow shop 
scheduling problem after continuous expansion and 
improvement [9]. In References, IG algorithm was applied to the 
no-idle flow shop scheduling problem [10]. In addition the IG 
with taboo reconstruction strategy is used to solve the FSP with 
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no-wait [11]. Ruiz improves the performance of IG algorithm by 
improving initialization, destruction, construction and local 
search [12]. Karabulut proposed an IG algorithm based on the 
temperature calculation formula as the acceptance criterion, and 
hybridized it with a random search algorithm [13]. Li et al. 
Proposed a new simulated annealing algorithm with four domain 
structures [14]. Recently, Huang proposed a restart scheme with 
six different operators in [2].  

Our contribution is that an improve IG algorithm is 
proposed, in which the key factory operation exchange strategy 
and LS-N method based on the exchange strategy are adopted to 
replace the insertion strategy used in the traditional IG 
algorithm. Through comparison experiments with other 
algorithms, it is proved that the performance of the proposed 
algorithm is significantly improved. 

II. THE SDST/DPFSP PROBLEM 

SDST/DPFSP described as follows: There are  jobs, 
, which need to be processed in identical 

factories, , and each factory has  

machines, . Each job  can be 

processed in any factory . The job is processed on the machine 
in the order from the first machine to the last machine, and the 
factory cannot be replaced during processing. 

The processing time of Job  on machine  is . 

When Job  is on machine , when  is the previous Job 

processed on the machine, SDST is . Each machine can 

only process one Job at any time, and one Job can only be 
processed in the same factory. Once a factory is selected, the 
factory cannot be replaced during processing. All operations are 
independent, and all factories start processing from 0 when 
processing the Job. 

The purpose of SDST / DPFSP in this paper is to assign jobs 
reasonably to the factory and find a job sequence to minimize 
makespan ( ). The mathematical model of the problem is 
described as follows: 

Notations: 
: Number of factories. 

: Number of machines in each factory. 
: Number of jobs needed to be processed. 

: The set of  jobs to be processed. 

: The set of m machines, where is the 

 machine used to complete the  process of jobs, 
. 

: The set of  parallel factories, where  

is the  factory from set , . 

: The operation of job on machine . 

 : The processing time of job on machine . 
: The setup time of job on machine , When the job 

is the first job processed on machine iM , then . 

 : The start time of . 

 : The complete time of job  on machine . 

: The start time of the job of factory on machine 
. 

: The complete time of the  job of factory  on 

machine . 
 : A fairly large positive integer. 

 : The completion time of all the jobs. 

Decision variables: 
: when job  is the  job processed in factory  on 

machine , the value of the decision variable is 1, otherwise 

it is 0. 
: when job is processed in factory , the value of the 

decision variable is 1, otherwise it is 0. 
Objective: 
Min                                                                                        (1) 

Subject to: 

  (2) 

       (3) 

(4) 
             (5) 

            

( 6 ) 
         

(7) 

           

(8) 
          (9) 

                               
( 1 0 ) 

               
( 1 1 ) 

                                                  (12) 

Constraint (1) indicates that the indicator of the problem 
studied in this paper is to minimize makespan. Constraint (2) 
means that each job can only be processed on one machine in a 
factory at a time, and constraint (3) means that each machine can 
only process one job at a time. Constraint (4) states that the 
processing of operations on the machine can only be performed 
sequentially, and the processing time cannot be overlapped. 
Constraint (5) stipulates that the processing sequence of the job 
cannot be changed. Constraint (6) describes the start time and 
completion time of a workpiece processing. Constraint (7) 
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represents the start time must be equal or greater than the 
completion time of two adjacent jobs on a certain machine. 
Constraint (8) describes the constraints between the start time 
and completion time of the job including preparation time. 
Constraint (9) refers to the situation when the job is first 
processed on the machine. In constraint (10), the completion 
time of a job is the sum of the start time and processing time of 
the job. Constraints (11) and (12) indicate that the start time of 
each machine and each job is not less than 0, respectively. 

Next, we use an example to illustrate how to calculate 
makespan. The example includes two factories ( ), two 
machines ( ) and five jobs ( ). Table 1 and Table 2 
show the processing time and setup time. It is assumed that a 
solution is that jobs 1, 2 and 4 are processed in factory 1, and 
jobs 3 and 5 are processed in factory 2. The value of decision 
variables can be obtained as follows: 

, ,

The remaining decision variables are 0. 

The objective value is  = 333. The scheduling Gantt is 
shown in Fig. 1. 

TABLE I.  PROCESSING TIMES  OF JOBS ON MACHINES  AND  

      

      

      

TABLE II.  SEQUENCE-DEPENDENT SETUP TIMES  OF JOBS ON MACHINES 

 AND  

 
 

 

          

            

            

            

            

            

 
Fig. 1. Gantt Chart for the example problem 

III. PROPOSED IG ALGORITHM FOR THE SDST/DPFSP 

In this paper, we propose an improved iterated greedy 
algorithm with simple structure. IG algorithm has shown 
excellent performance in solving the flow shop scheduling 
problem [15]. For example, Ding and Song used tabu-based 
reconstruction strategy to enhance the search ability of the 
algorithm in [16]. Ruiz and Pan improved the local search, 
Destruction and Construction of IG algorithm, which greatly 
improved the performance of the algorithm [10]. The traditional 
IG algorithm uses a heuristic method, generally NEH, to create 
the initial solution. The iterative content includes four parts: 
destruction, reconstruction, local search and acceptance criteria. 
When the termination condition is satisfied, the iteration stops. 

The traditional IG algorithm framework is as follows: 

Algorithm 1 The traditional IG algorithm 
01: Begin: 
02:  Set the parameters:  
03:   

04:   

05:  while termination criterion is not satisfied do 
06:       

07:       

08:       

09:       

10:   Endwhile 
11: End 

At the same time, we use the flowchart to show the running 
process of the IG algorithm, as shown in Fig. 2: 

 
Fig. 2. IG algorithm flow chart 

A. Initial Solution 

The generation of initial solution is the first step of the 
program, and its quality is crucial. We retained NEH2_en in [12] 
to generate the initial solution that meets the requirements. 
Firstly, all jobs are sorted in descending order according to the 
sum of processing time on all machines to generate sequence 
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seeds, . Then, the first job in the sequence is 
assigned to the first factory, and the second to the second 
factory. After all the factories are assigned, the remaining jobs 
are taken out one by one, and then the best position is tried and 
found in all sequences for insertion. After the insertion 
operation, the former or latter job of the insertion position is 
taken out, and tested at all positions of the same factory, and the 
insertion operation is performed at the optimal position. In 
addition, referring to the previous DPFSP literature, all the 
insertion processes adopt the well-known Taillard acceleration 
of the insertion neighborhood to improve the insertion speed. 

The pseudocode of NEH2_en is as follows: 

Algorithm 2   NEH2_en 
01: Begin: 

02:  Compute  is the total 

processing time of job  

03: sort jobs in descending order of  

04:  for  to  do 

05:      Assign job  in  to plant  

06:  endfor 
07:  for  to  do 

08:      for to  do 

09:             Test  in all possible positions in    % Taillard 

acceleration is applied 
10:           Get the lowest makespan  in factory  

11:           Get the position of  is  

12:      endfor 
11:     

12:     Insert  in the sequence  at position  

13:    Extract at random job  from position or 

*+1lpos  from  

14:    Insert job  in at the position resulting in the 

lowest makespan 
15:  endfor 
16: Output  

B. Local search 

Local search in IG algorithm is an important factor to 
determine the quality of solution. Insertion operation is 
generally used in the local search of traditional IG algorithm. For 
example, for the case of  jobs, insertion attempts are generally 
required  locations, and the time complexity is 

. If the selected location is , the number of jobs that need to be 
moved is , and the time complexity becomes 

. If the result of the execution does not 
make the target value improved, the above operation will be 
repeated until the target value is improved, which makes the 
number of effective executions in a certain period of time 
reduced. Therefore, in this paper, we abandon the previous local 
operation dominated by the insertion strategy, and choose the 

swapping strategy based on the previous LS_3 [12]. We call it 
LS_N, and its time complexity is only . The operation 
steps of LS_N are as follows. 

Firstly, find out the key factories in all factories, that is, the 
factory with the largest makespan, and then find out the factory 
with the largest makespan except the key factory. Then, two jobs 
are randomly selected in two factories to test the makespan 

 after the exchange. If the makespan  is less than the 

original maxC , the exchange is retained. Otherwise, the solution 
remains unchanged. Then continue to select the job until all the 
jobs in the key factory are traversed. LS_N algorithm framework 
is as follows: 

Algorithm 3   LS_N 
01: Begin 
02:  Find the critical factory  with the  

03:  Find the critical factory  with the  % is 

a value only less than  

04:   
05:  While  do   %  is the number of jobs in 
factory  

06           
06:         randomly selected job in  

07:         randomly selected job in  

08:         Test job and  for swap 
is the makespan of after swapping in all factories 

10:         if  

11:                  
12:                  
13:         elseif 
14:         Swap job  and  

15:         

16:        Find the critical factory  with the  

17:        Find the critical factory  with the  

18:         
19:    endif 
20:  endwhile 
21: Output  

C. Destruction, construction and acceptance criteria 

In the loop phase of IG algorithm, we repeat the four steps 
of Destruction, Construction, local search and acceptance 
criteria until the quality of the solution is improved. In the 
Destruction phase, first select a factory containing 
jobs, then randomly select a job from it, add it to the sequence 

 (stored deleted jobs), and delete the job from the original 
sequence. Repeat the last operation  times to get two 
sequences, sequence  with  jobs and sequence  (store 
the remaining sequence of jobs without changing the sequence) 
with  jobs.  

The Destruction pseudo-code is given in Algorithm 4. 
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Algorithm 4 Destruction 
01: Begin 
02: Procedure Destruction( , ) 

03:  

04:  
05: while do 
06:       

07:      if then 
08:            

09:            

10:            Delete job from  

11:            
12:     endif 
13: endwhile 
14: Output  

 The reconstruction phase is, firstly, the first job is taken out 
from , and it is tried in all positions until the best insertion 
position is found, that is, the position with the smallest 
makespan. Then, the second job is taken out, and the above 

 are taken out 
and inserted. 

The Construction pseudocode is given in algorithm 5. 
Algorithm 5 Construction 
01: Begin 
02: Procedure Construction ( , ) 
03:  for to  

04:      the job of  

05:      for to do 

06:            

07:           Get the lowest makespan  in factory  

08:          Get the position of  is  

09:      endfor 
10:      

11:      Insert  in the sequence  at position  

12:  endfor 
13:   
14: Output  

Since the code referenced in this paper is the code in Ruiz ' 
s [12], the code in the ' Receiving Criteria ' section still chooses 
Ruiz and Stützle (2007), a constant temperature acceptance 
criterion based on parameter , as follows:  

         (14) 

T needs calibration, but has shown robustness (most values 
are not zero and not too high). 

IV. EXPERIMENT AND ANALYSIS 

The performance of the NIG algorithm is evaluated using 
270 examples. In the example, ,  and  is the number of 

jobs, machines and factories, respectively. Their values are as 
follows: , ,

. We randomly combine their values to 
generate instances of different sizes. In the example, the data are 
generated in a random way. The distribution range of processing 
time is [1, 99), and the value range of preparation time is 

. In this experiment, we repeat 
each instance five times, and each instance takes the minimum 
value in five runs. The index of this experiment is to minimize 
makespan ( ). 

All test algorithms are compiled and coded by Visual Studio 
2019 ,C++, running on Microsoft Windows 10 operating 
system, 16GB DDR4 memory and 1.00 GHZ Intel Core i5 - 
1035G1 processor. 

A. Computational evaluation 

The DPFSP is a  NP-hard problem, thus we cannot obtain 
the optimal solution. Therefore, in this paper, we will use the 
performance evaluation method of the single objective 
optimization algorithm commonly used in the literature to 
evaluate the performance of the algorithm, namely the 
percentage relative deviation RPI. The calculation method of 
RPI is as follows:  

     (15). 

Among them,  is the minimum makespan of the 

algorithm running five times in an instance, and  is the 
minimum makespan of all the algorithms running five times in 
this instance. It can be seen from the formula that in the 
comparison algorithm, the better the performance is, the closer 
the RPI is to 0, and the algorithm with RPI equals to 0 has the 
best performance in the current comparison algorithm. 

In this paper, five algorithms are selected to compare with 
NIG, namely discrete artificial bee colony algorithm (DABC) 
[17], artificial chemical reaction optimization (CRO) [3], 
discrete differential evolution algorithm (DDE) [18], and 
improved iterated greedy algorithm IGA [12] and IGR [2]. For 
the 270 examples mentioned above, all algorithms are executed 
five times in comparison. In order to obtain fair results, we set 
the termination condition as: 

     (16) 

n and are the number of jobs and the number of machines 
in the current instance respectively. 

B. RPI comparison 

Table 3 shows the RPI under different instances, and the 
average RPI of each algorithm under different factory numbers. 
According to the above formula for calculating RPI, the 
performance of NIG algorithm is significantly better than that of 
the other five algorithms. With the increase of examples, the 
performance of DABC, DDE and IGA algorithms gradually 
deteriorates, while the performance of IGR gradually improves. 
Overall, the performance of DDE and IGR is good, but the 
performance of NIG is the best. 
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TABLE III.  RPI OF COMPARISON ALGORITHM WHEN CPU = 10 

Factory J*M DABC CRO DDE IGA IGM NIG 

f=2 

100*5 0.054  0.049  0.015  0.039  0.018  0 
100*8 0.053  0.077  0.015  0.079  0.046  0 

100*10 0.082  0.064  0.021  0.050  0.031  0 
200*5 0.062  0.028  0.022  0.053  0.030  0 
200*8 0.067  0.035  0.010  0.052  0.033  0 

200*10 0.067  0.053  0.009  0.069  0.039  0 
300*5 0.051  0.037  0.010  0.046  0.037  0 
300*8 0.051  0.038  0.011  0.064  0.033  0 

300*10 0.055  0.028  0.008  0.037  0.034  0 
400*5 0.055  0.040  0.018  0.081  0.041  0 
400*8 0.043  0.028  0.010  0.060  0.033  0 

400*10 0.037  0.026  0.011  0.040  0.029  0 
500*5 0.038  0.030  0.015  0.044  0.024  0 
500*8 0.043  0.024  0.012  0.047  0.031  0 

500*10 0.040  0.031  0.005  0.038  0.028  0 
mean 0.053  0.039  0.013  0.053  0.032  0 

f=3 

100*5 0.052  0.057  0.003  0.043  0.031  0 
100*8 0.105  0.097  0.026  0.070  0.060  0 

100*10 0.073  0.082  0.021  0.055  0.034  0 
200*5 0.046  0.042  0.018  0.046  0.024  0 
200*8 0.076  0.061  0.005  0.066  0.038  0 

200*10 0.066  0.055  0.009  0.073  0.041  0 
300*5 0.060  0.036  0.006  0.032  0.022  0 
300*8 0.043  0.057  0.007  0.062  0.043  0 

300*10 0.054  0.031  0.004  0.051  0.033  0 
400*5 0.036  0.025  0.008  0.040  0.025  0 
400*8 0.057  0.042  0.004  0.055  0.035  0 

400*10 0.055  0.047  0.001  0.044  0.029  0 
500*5 0.026  0.029  0.006  0.035  0.019  0 
500*8 0.038  0.043  0.000  0.061  0.036  0.001  

500*10 0.043  0.021  0.005  0.047  0.029  0 
mean 0.055  0.048  0.008  0.052  0.033  0.00009  

f=4 

100*5 0.058  0.049  0.010  0.040  0.019  0 
100*8 0.067  0.086  0.019  0.057  0.024  0 

100*10 0.082  0.085  0.026  0.047  0.039  0 
200*5 0.054  0.047  0.008  0.034  0.017  0 
200*8 0.051  0.065  0.0003  0.061  0.039  0 

200*10 0.083  0.071  0.008  0.049  0.040  0 
300*5 0.068  0.055  0.013  0.055  0.026  0 
300*8 0.065  0.047  0.011  0.078  0.036  0 

300*10 0.066  0.036  0.006  0.047  0.033  0 
400*5 0.039  0.044  0.009  0.037  0.016  0 
400*8 0.073  0.042  0.003  0.048  0.030  0 

400*10 0.060  0.046  0.006  0.050  0.035  0 
500*5 0.053  0.038  0.016  0.054  0.030  0 
500*8 0.066  0.037  0.018  0.052  0.028  0 

500*10 0.056  0.047  0.028  0.066  0.040  0 
mean 0.063  0.053  0.012  0.052  0.030  0.000  

f=5 

100*5 0.054  0.027  0.009  0.018  0.007  0 
100*8 0.114  0.080  0.026  0.053  0.029  0 

100*10 0.116  0.115  0.060  0.061  0.051  0 
200*5 0.074  0.083  0.040  0.081  0.041  0 
200*8 0.095  0.069  0.000  0.056  0.045  0.005  
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200*10 0.102  0.072  0.020  0.073  0.046  0 
300*5 0.057  0.039  0.007  0.048  0.015  0 
300*8 0.083  0.062  0.021  0.063  0.035  0 

300*10 0.107  0.069  0.006  0.073  0.044  0 
400*5 0.064  0.055  0.004  0.060  0.027  0 
400*8 0.077  0.054  0.017  0.055  0.029  0 

400*10 0.078  0.053  0.016  0.061  0.039  0 
500*5 0.062  0.046  0.014  0.064  0.030  0 
500*8 0.070  0.043  0.007  0.063  0.032  0 

500*10 0.080  0.041  0.022  0.066  0.042  0 
mean 0.082  0.060  0.018  0.060  0.034  0.000348 

f=6 

100*5 0.101  0.100  0.032  0.052  0.041  0 
100*8 0.116  0.072  0.024  0.059  0.042  0 

100*10 0.100  0.103  0.030  0.056  0.046  0 
200*5 0.087  0.074  0.025  0.055  0.030  0 
200*8 0.099  0.065  0.014  0.058  0.035  0 

200*10 0.093  0.083  0.058  0.048  0.042  0 
300*5 0.071  0.046  0.040  0.056  0.024  0 
300*8 0.090  0.059  0.034  0.070  0.033  0 

300*10 0.099  0.065  0.058  0.064  0.050  0 
400*5 0.083  0.054  0.061  0.063  0.029  0 
400*8 0.084  0.049  0.045  0.049  0.031  0 

400*10 0.095  0.047  0.028  0.067  0.034  0 
500*5 0.069  0.045  0.025  0.055  0.025  0 
500*8 0.074  0.050  0.040  0.050  0.030  0 

500*10 0.078  0.056  0.032  0.070  0.039  0 
mean 0.089  0.065  0.036  0.058  0.035  0.000  

f=7 

100*5 0.112  0.031  0.016  0.056  0.027  0 
100*8 0.082  0.079  0.049  0.060  0.014  0 

100*10 0.123  0.086  0.043  0.044  0.036  0 
200*5 0.114  0.063  0.024  0.059  0.029  0 
200*8 0.120  0.095  0.024  0.073  0.037  0 

200*10 0.102  0.082  0.048  0.050  0.039  0 
300*5 0.090  0.059  0.043  0.128  0.029  0 
300*8 0.127  0.071  0.048  0.076  0.043  0 

300*10 0.102  0.066  0.041  0.066  0.041  0 
400*5 0.073  0.047  0.039  0.039  0.018  0 
400*8 0.101  0.053  0.052  0.064  0.030  0 

400*10 0.104  0.043  0.018  0.070  0.034  0 
500*5 0.067  0.044  0.052  0.052  0.018  0 
500*8 0.074  0.053  0.036  0.061  0.027  0 

500*10 0.090  0.062  0.046  0.073  0.039  0 
mean 0.099  0.062  0.039  0.065  0.031  0.000  

To identify the acquired data more clearly, we also use 
confidence intervals to analyze the data, as shown in Fig. 3. It 
can be seen from the graph that the performance of NIG 
algorithm is significantly better than other algorithms. In 
addition, DDE algorithm and IGR algorithm are also better, 
while DABC and IGA are relatively worse. 

Next, we further analyze the convergence of the algorithm. 
We have selected four algorithms, DDE, IGA, IGR, and NIG, 
which perform well in the problem, as shown in Fig. 4. In order 
to make the expression clearer, we have selected three question 
examples of 300*5*3,400*5*6, 500*5*6. Since the termination 
condition of the programming operation is 

, we can change the running time of 

the algorithm by changing the value of the CPU. Therefore, the 
X axis in Fig. 3 is the value of the CPU, the optimal solution 
(makespan) obtained by running the algorithm five times is the 
Y axis. It can be seen from the three figures a, b, and c that DDE 
is easy to fall into the local optimum. The performance of the 
IGR algorithm gradually increases with the increase of the 
instance size. The NIG algorithm performs best in these four 
algorithms. 
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Fig. 3. Confidence Interval Diagram of the Algorithm with CPU = 10 

  
(a) 300*5*3 

 
(b) 400*5*6 

  
(c) 500*5*6 

Fig. 4. Convergence curve of DDE, IGA, IGR, NIG 

V. CONCLUSIONS 

In this paper, the DPFSP with sequence-dependent 
preparation time is studied and solved by the improved IG 
algorithm. Firstly, the mathematical model of SDST / DPFSP is 
described. Then, this paper proposes a local search based on 
exchange strategy, which improves the search efficiency. 
Through compared with other existing algorithms, the 
performance has been significantly improved. 

In the future, we will do more research on problem-oriented 
strategies, focus more on algorithm thinking and consider 
different optimization objectives. For example, the green energy 
saving index is added to the problem of distributed displacement 
flow shop, and more attention is paid to the thinking of problems 
related to real life. 
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