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Abstract— With the global energy shortage, climate anomalies,6
environmental pollution becoming increasingly prominent, energy7
saving scheduling has attracted more and more concern than8
before. This paper studies the energy-efficient distributed hybrid9
flow-shop scheduling problem (DHFSP) with blocking constraints.10
Our aim is to find the job sequence with low energy consumption11
as much as possible in a limited time. In this paper, we formulate a12
mathematical model of the DHFSP with blocking constraints and13
propose an improved iterative greedy (IG) algorithm to optimize14
the energy consumption of job sequence. In the proposed algo-15
rithm, first, a problem-specific strategy is presented, namely, the16
global search strategy, which can assign appropriate jobs to the17
factory and minimize the energy consumption of each processing18
factory. Next, a new selection mechanism inspired by Q-learning is19
proposed to provide strategic guidance for factory scheduling. This20
selection mechanism provides historical experience for different21
factories. Finally, five types of local search strategies are designed22
for blocking constraints of machines and sequence to be scheduled.23
These proposed strategies can further improve the local search24
ability of the QIG algorithm and reduce the energy consumption25
caused by blocking. Simulation results and statistical analysis on26
90 test problems show that the proposed algorithm is superior27
to several high-performance algorithms on convergence rate and28
quality of solution.29
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I. INTRODUCTION 33

W ITH the development of social economy and science, the 34

demand for energy has expanded rapidly. Coal, oil and 35

other non-renewable fossil resources are becoming more and 36

more important. Sustainable development and energy conserva- 37

tion have become a matter of importance for countries [1], [2]. 38

Manufacturing is an energy-intensive sector that consumes 39

nearly one-third of the world’s energy and produces 36% of the 40

world’s carbon dioxide [3]. As a part of the manufacturing indus- 41

try, intelligent optimization and scheduling play a very important 42

role in the machining process for the improvement of resource 43

utilization and energy consumption [4], [5]. Refer to [6], [7], [8], 44

for reducing the production cost and energy consumption, many 45

enterprises begin to use intelligent optimization algorithms to 46

find better scheduling sequences. 47

In real-world, to improve the productivity of production pro- 48

cess, balance the flexibility of each processing stage and reduce 49

the impact of the bottleneck stage [9], enterprises start to set 50

identical parallel machines in each stage to process jobs. The 51

production line scheduling problem is noted as the hybrid flow 52

shop scheduling problem (HFSP) [10]. However, in some cases, 53

due to limits of storage space, product characteristics, or technol- 54

ogy [11], there is usually no buffer between any adjacent parallel 55

machines in actual process of scheduling. This problem is also 56

named as the blocking HFSP (BHFSP). In addition, with the 57

increasing of market competition, the centralized manufacturing 58

approach has been hard to meet the current market demand 59

flexibly [12], [13], [14], [15]. Therefore, some companies begin 60

using a distributed production scheduling mode to share the 61

production pressure of the factory. Due to the emergence of 62

distributed production mode, many scholars started to conduct 63

extensive and in-depth research on the distributed flow shop 64

(multi-plant) scheduling problem (DPFSP) [16], [17]. In DPFSP, 65

companies set up multiple factories to process the same batch 66

of products in parallel, and it allows for more efficient resource 67

allocation, decentralization of companies’ production pressure 68

as well as reduction of product production cycles and risks [18], 69

[19], [20]. 70
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In this paper, the energy-efficient distributed hybrid flow-71

shop scheduling problem (DHFSP) with blocking constraints72

is studied. Due to the blockage of jobs, machines cannot per-73

form normal machining operations, causing unnecessary energy74

consumption. This also directly leads to a decrease in pro-75

cessing efficiency and raises production costs for the company.76

Therefore, to reduce the occurrence of a job blocking, it is of77

great importance to design strategies that can seek a reasonable78

scheme and help factories find a near-optimal job sequence (i.e.,79

the one with the lowest energy consumption) in a large and80

irregular job sorting.81

However, the generation of blocking conditions usually82

changes uncertainly with the change of job sequencing in83

DHFSP, and these factors also lead to irregular changes in84

the optimal scheduling sequence. Thus, it is difficult to find85

a satisfactory solution in a short time using traditional math-86

ematical methods. The intelligent optimization algorithm has87

been widely used by scholars to solve the flow shop scheduling88

problem for a long time and has achieved good results. This89

paper designs optimization methods for job sequencing under90

uncertainty for improving the productivity of enterprises and91

reducing energy consumption in sequence processing. Before92

designing corresponding strategies for DHFSP with blocking93

constraints, we first analyze existing challenges and difficulties94

in this problem, the details are as follows:95

1) The quality of solution will change irregularly. Energy96

consumption of job sequence is affected by blocking con-97

straints, resulting in irregular change and scope reduction98

of the sequence order in scheduling process. It is some-99

times difficult to find a better feasible solution in a limited100

time.101

2) Assigning jobs to factories while ensuring suitability and102

efficiency, simultaneously. In the allocation process, due103

to the inefficient strategies, it may result in huge energy104

consumption of factories and reduced enterprise produc-105

tivity.106

3) Each processing factory is usually enclosed and unrelated.107

In specific scheduling process, the processing environ-108

ment of each factory is isolated from each other. Although109

the distributed scheduling mode shares part of the produc-110

tion pressure, such a closed processing environment is not111

conducive to factory processing to a certain extent.112

4) Blocking conditions of factories are difficult to be im-113

proved. Blocking constraints limit the local search range114

of each factory, and there is a complex nonlinear rela-115

tionship between these restrictions and job sequence. The116

scheduling sequence solution is easier to fall into local117

optimum if the job is blocked on the current machine.118

To the best of our knowledge, there is little research on DHFSP119

with blocking constraints, but scholars have come to study the120

related scheduling problem. To determine the scheduling se-121

quence and minimize the weighted completion time with a work122

shift, Nejati et al. [21] solve the HFSP with parallel machines.123

For minimizing the makespan and total flowtime, Marichelvam124

et al. [22] address the scheduling problem with parallel ma-125

chines. Zhang et al. [23] utilized the shortest waiting time rule126

and a combined neighborhood search strategy to solve the HFSP127

with lot-streaming. To solve the blocking HFSP (BHFSP), Qin 128

et al. [24] designed the local and global perturbation strate- 129

gies based on the blocking constraints to optimize the energy 130

consumption. Aqil et al. [25] investigated the BHFSP under 131

the sequence-dependent setup time constraint to minimize the 132

earliness and total tardiness with parallel machines. For solving 133

the DPFSP, Bargaoui et al. [26] make the solution jump out of the 134

local optimum and further improve the quality of the scheduling 135

sequence. Wang et al. [27] analyzed the critical path of the job 136

sequence and solve the distributed assembly permutation flow- 137

shop scheduling problem (DAPFSP). Then, Wang et al. [13] 138

designed a mixed-integer linear programming model of the 139

DHFSP with heterogeneous factories and used the bi-population 140

cooperative memetic algorithm to solve this problem. Shao 141

et al. [12] developed the DNEH (Nawaz–Enscore–Ham) with 142

the smallest-medium rule and the multi-neighborhood iterated 143

greedy method to solve the DHFSP. 144

Although the above-mentioned researches have made signif- 145

icant contributions to the optimized scheduling problems, they 146

still have the following limitations: 147

1) They did not make targeted strategy design for blocking 148

conditions. When consider the blocking condition of jobs, 149

energy consumption of the scheduling sequence will alter 150

irregularly with the change of arrangement order. The 151

existing Intelligent optimization scheduling algorithms 152

are not suitable for solving the DHFSP with blocking 153

constraints. 154

2) Too long allocation time for jobs will reduce the search 155

performance of the algorithm and production efficiency. 156

It is difficult to reduce the impact of blocking constraints 157

quickly in such a large search region and find the best 158

allocation scheme. 159

3) Neither of them considers breaking the closed processing 160

state between different factories. The scheduling environ- 161

ment is isolated, resulting in production occlusion among 162

different factories. 163

4) They do not take the blocking conditions of parallel 164

machines of factories into account. When blocking con- 165

straints are considered, the local search scope of the sched- 166

uled sequence is narrowed, which makes its solution easily 167

fall into the local optimal in the iterative process. 168

For solving these problems mentioned above, we reviewed 169

and compared the performance of different intelligent opti- 170

mization algorithms [9], [28], [29], [30], [31], hoping to find 171

a suitable algorithm and making further improvements based on 172

the characteristics of DHFSP with blocking constraints. Finally, 173

we learned that Iterated Greedy (IG) algorithm [32] shows its 174

superiority in many scheduling problems compared to other 175

intelligent optimization algorithms. It has fewer parameters and 176

a simple structure, which makes it easy to be realized. Thus, in 177

this paper, we propose an improved IG algorithm to reduce the 178

energy consumption of DHFSP with blocking constraints. 179

The main contributions of this paper are given as follows. 180

1) In this paper, to satisfy the manufacture demands, we first 181

design the mathematical model of DHFSP with blocking 182

constraints for minimizing the energy consumption and 183

use the gurobi to verify its correctness. 184
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2) To explore the promising solution more quickly, this paper185

proposes a global search strategy with the consideration of186

job sequences in different factories. The proposed strategy187

can improve the global search ability of the algorithm,188

and further reduce energy waste by adjusting the job189

arrangement order.190

3) A new selection mechanism inspired by Q-learning is191

integrated into the IG algorithm to break the closed state192

between factories. This selection mechanism realizes ex-193

perience sharing and interaction between different facto-194

ries. Experiments show that it can slightly improve the195

performance of the proposed algorithm.196

4) To further improve the local search ability of IG algorithm,197

we present five local search strategies for reducing the198

energy consumption. These strategies can perform a wide199

range of adjustments to blocking jobs and help find better200

solutions.201

The remainder of this paper is organized as follows. Section II202

reviews some existing literature that solve the related problems.203

In section III, the mathematical model of DHFSP with blocking204

constraints is formulated. Section IV proposed the framework205

and details of the improved IG algorithm. In Section V, compar-206

ison results show the performance of the proposed algorithm.207

Section VI gives the concluding remarks and directions for208

future research.209

II. LITERATURE REVIEW210

The DHFSP with blocking constraints, to the best of our211

knowledge, has not been previously studied in the existing re-212

searches. Therefore, we review the closely related contributions,213

e.g., HFSP, BHFSP, DPFSP, DHFSP.214

In recent years, many types of intelligent optimization algo-215

rithms have been proposed to solve the HFSP and its extension216

problem, BHFSP.217

For solving HFSP, A hybrid iterated local search algorithm218

is proposed to solve the HFSP for economic lot-sizing and219

sequence [33]. Kurdi [34] designed an AC system with a220

novel Non-Daemon Actions procedure for multiprocessor task221

scheduling in HFSP. Liu et al. [35] designed the hybrid algorithm222

to solve the specialized two-stage HFSP with parallel batching223

machines. Ztop et al. [36] suggested four variants of iterated224

greedy algorithms and a variable block insertion heuristic for225

the HFSP with total flowtime minimization. For minimizing the226

completion time, Yu et al. [9] proposed a genetic algorithm to227

solve the HFSP with machine eligibility and unrelated machines.228

The above algorithms effectively solve the problem of HFSP,229

they did not consider the blocking constraints into the HFSP.230

However, this condition is very common in the real world, such231

as concrete blocks [37] and metalwork [38]. Therefore, later,232

we look for some currently published literature on HFSP with233

blocking constraints (BHFSP).234

The presence of the BHFSP in manufacturing industry system235

has been the subject of many researches. Luo et al. [38] presented236

a genetic algorithm (GA) algorithm to investigate a two-stage237

BHFSP in real-world metal-working company, the objective of238

makespan is optimized in this literature. Nakkaew et al. cite239

2016 Acom presented a GA and a discrete artifical bee colony 240

(DABC) algorithm to solve the BHFSP with sequence dependent 241

setup times with the minimization of the overall production time. 242

Missaoui et al. [39] proposed a meta heuristic centered on IG 243

method to investigate the BHFSP with optimizing the sum of 244

the tardiness and earliness. The above studies are all carried out 245

on BHFSP, and they have solved this problem well. However, in 246

these problems, distributed scheduling environment is not con- 247

sidered, let alone the distributed HFSP (DHFSP) with blocking 248

constraints with energy consumption as the optimization goal. 249

In order to meet the needs of the modern market, many 250

enterprises will establish multiple factories to improve the pro- 251

cessing efficiency of products, which has become a new research 252

hotspot: DPFSP. Many scholars have designed a serious of 253

effective meta-heuristic algorithms to solve the DPFSP. Jian 254

et al. [40] proposed a new tabu search algorithm to solve the 255

DPFSP. Rifai et al. [41] proposed a multi-objective adaptive 256

large neighborhood search algorithm to solve the distributed 257

reentrant flow shop scheduling (DRPFS) problem with three 258

objectives, the total cost, the maximum completion time, and 259

the average delay. Pan et al. [20] proposed a series of algorithms 260

based on construct heuristic and meta-heuristic frameworks to 261

solve the DPFSP and the DAPFSP [42]. Ruiz et al. [43] used the 262

IG algorithm to solve this problem and proved its effectiveness. 263

Recently, Pan et al. [44] proposed an effective co-evolutionary 264

algorithm to solve the distributed flow-shop group scheduling 265

problems. Ochi et al. [45] designed the bounded search Iterated 266

Greedy Algorithm BSIG to solve the DAPFSP problem. On the 267

same problem, Huang et al. [46] proposed a group-think based 268

IG algorithm (GIGA)) to optimize the total flow time. Recently, 269

Shao et al. [47] proposed an efficient IG algorithm to solve 270

DPFSP with blocking to minimize the maximum completion 271

time. Similarly, Chen et al. [48] also used IG algorithm to solve 272

DPFSP with blocking constraints. These algorithms effectively 273

solve the multi-factory scheduling problem. However, the situa- 274

tion of the parallel machines is not included. Thus, next, we look 275

for some literatures that integrate the distributed and parallel 276

machine scheduling, and investigate whether the previously 277

mentioned blocking constraints and energy consumption are 278

considered as targets. 279

According to our survey, there are a few studies on DHFSP. 280

For example, Ying et al. [49] proposed a self-tuning iterated 281

Greedy (SIG) algorithm to optimize the maximum completion 282

time of the job sequence. Lei et al. [50] proposed the Shuffled 283

Frog-leaping algorithm with Memeplex grouping (MGSFLA) 284

to solve the distributed two-stage hybrid flow shop schedul- 285

ing problem with sequence-dependent setup times (DTHFSP). 286

Wang et al. [13] proposed a bi-population cooperative memetic 287

algorithm (BCMA) for solving the heterogeneous factories of 288

the DHFSP. Shao et al. [12] proposed the DNEH with shar- 289

medium rule and the multi-neighborhood iterative greedy al- 290

gorithm to solve the DHFSP. Li et al. [51] proposed the hy- 291

brid discrete artificial bee colony algorithm to solve a parallel 292

batching DPFSP with deteriorating jobs. Zheng et al. [52] pro- 293

posed a cooperative coevolution algorithm to solve the multi- 294

objective fuzzy DHFSP with fuzzy machining time and fuzzy 295

delivery time. The above studies comprehensively consider the 296
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conditions of parallel machines and multiple factories. These297

papers are very new and efficient, but they do not consider298

the blocking condition of the jobs and energy consumption,299

simultaneously. As a result, we find that none of the published300

papers solve the DHFSP with blocking constraint with energy301

consumption as the optimization objective.302

The existing literature mentioned above only considers two303

or three of conditions (e.g., the parallel machines, blocking con-304

straints, distributed environment, energy consumption). How-305

ever, all kinds of these situations widely exist in the real-world,306

such as the production of glass and concrete. In this paper, we307

study the problem with these four conditions simultaneously.308

Then, we propose an improved IG algorithm to optimize energy309

consumption. Based on the advantages of IG algorithm, we310

design the global and local search strategies based on swap311

operators for blocking constraints. The proposed strategies can312

reduce the computational complexity of the algorithm and in-313

crease the quality of solutions.314

III. PROBLEM DESCRIPTION315

This section first proposes the DHFSP model with blocking316

constraints. Then it gives the mathematical definitions of the as-317

sumptions, parameters, optimization objective, and constraints318

of this problem in Section III-A. In Section III-B, it gives the319

Gantt charts with and without blocking constraints to illustrate320

the impact of restrictions on energy consumption.321

A. Problem Formulation322

The DHFSP with blocking constraints is formulated as fol-323

lows.It comprises F(f=1,...,F) factories and each factory f con-324

tains a set of parallel machines with S(s=1,...,S) stages. Each325

stage has a different number of machines. A collection of326

J(j=1,...,J) jobs are assigned to any one of these factories to327

process orderly. In all factories, there is no buffer between any328

two continuous stages. When jobs are finished but all machines329

in the next stage are in processing state, jobs will be blocked on330

the current production line until one of the downstream machines331

is available. Once the blocking condition occurs, it will affect332

the overall production efficiency of the sequence and increase333

the energy consumption. In this paper, the schedule problem334

contains two parts: allocating all jobs to one of the F identical335

factories and determining the processing order with minimum336

energy consumption. According to the literature [10], [13], [53],337

we give the assumptions, parameters, decision variables, objec-338

tive, and constraints of the DHFSP with blocking constraints.339

The problem can be solved in three parts: job processing en-340

ergy consumption, blocking energy consumption, and machine341

idle energy consumption. In the MILP model, the difference342

between the departure time and the completion time of each343

job on the same machine is the corresponding machine blocking344

time. If the departure time of the job is greater than its completion345

time, it means that the job is blocked on the current machine.346

In this paper, when establishing the mathematical model, the347

first step is to determine the factory allocation problem, and the348

second step is allocating machines according to the relationship349

between the completion time and the departure time of jobs, then 350

process the job sequence and calculate the objective value. 351

Assumptions: 352

1) All jobs and machines are available at time zero. 353

2) The processing time of each job is predefined. 354

3) Each job must choose exactly one factory to process and 355

once a job is assigned in one factory, it cannot be assigned 356

to other factories. 357

4) The processing order is determined in the first stage, and 358

jobs in this order are processed from the first stage to the 359

last stage. 360

5) Each job must pass through all stages, and at any given 361

time, a job can only be processed on exactly one machine 362

and each machine can only process one job. 363

6) There is no buffer between any two continuous stages. 364

7) Both blocking and idle states of machines are considered. 365

8) Once a job is completed at the current machine, it must 366

be transported to the next stage immediately. 367

9) No interruption and pre-emption are allowed. 368

10) Other time-consuming operations are included in pro- 369

cessing time. 370

1) Parameters: 371

J : Number of jobs. 372

F : Number of factories. 373

S: Number of stages. 374

Γ : The set of jobs, Γ ∈ {1, 2, . . ., N}. 375

Λ: The set of factories, Λ ∈ {1, 2. . ., F}. 376

Ω: The set of stages, Ω ∈ {1, 2. . ., S}. 377

j, j1, j2: Index of jobs, j, j1, j2 ∈ Γ . 378

f : Index of factories, f ∈ Λ. 379

s: Index of stages, s ∈ Ω. 380

Mf,s: Number of parallel machines at stage s in factory 381

f ,. 382

m: Index of machines at stage s in factory f , m ∈ 383

{1, . . .,Mf,s}. 384

pj,s: Processing time of job j at stage s. 385

ECProcess
s : The energy consumption per unit time of a job 386

which is processed at stage s. 387

ECBlocking
s : The energy consumption per unit time of a job 388

which is blocked at stage s. 389

ECIdle
s : The energy consumption per unit time of a ma- 390

chine which is in idle state at stage s. 391

h: Sufficiently large positive number. 392

2) Decision variables: 393

Cj,s: The completion time of job j at stage s. 394

Dj,s: The departure time of job j at stage s. 395

Ef,s,m: The shutdown time of machinem at stage s in factory 396

f . 397

xj,f : Binary decision variable, 1 if job j is assigned in 398

factory f , 0 otherwise. 399

yj,f,s,m: Binary decision variable, 1 if the job j is processed 400

on machine m at stage s in factory f , 0 otherwise. 401

zj1,j2,s: Binary decision variables, 1 if both the job j1 is 402

processed before the job j2 at stage s, 0 otherwise. 403

PEC: The total energy consumption of machines when they 404

stay at the processing state. 405
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BEC: The total energy consumption of machines when they406

stay at the blocking state.407

IEC: The total energy consumption of machines when they408

are at the idle state.409

3) Objective:

Minimize (PEC +BEC + IEC)

F∑
f=1

xj,f = 1, ∀j ∈ Γ (1)

Mf,s∑
m=1

yj,f,s,m = xj,f , ∀f ∈ Λ, ∀s ∈ Ω, ∀j ∈ Γ (2)

410

Cj,s − pj,s ≥ 0, ∀j ∈ Γ, ∀s ∈ Ω (3)

411

Dj,s ≥ Cj,s, ∀s ∈ Ω, ∀j ∈ Γ (4)

412

Cj,s = Dj,s−1 + pj,s, ∀s ∈ Ω, ∀j ∈ Γ (5)

413

zj1,j2,s + zj2,j1,s = 1, ∀s ∈ Ω, ∀j1, j2 ∈ Γ, j1, �= j2 (6)

414

Cj2,s ≥ Dj1,s+ pj2,s+ (yj1,f,s,m+ yj2,f,s,m+zj1,j2,s −3) ·h,
∀f ∈ Λ, ∀s ∈ Ω, ∀m ∈ {1, 2, . . . ,Mf,s} ,

∀j1, j2 ∈ Γ, j1, �= j2
(7)

415

Ef,s,m ≥ Dj,s + (yj,f,s,m − 1) · h, ∀f ∈ Λ,

∀s ∈ Ω, ∀m ∈ {1, 2, . . . ,Mf,s} , ∀j ∈ Γ (8)

416

IEC =

S∑
s=1

EC
Idle

s ·
⎛
⎝

F∑
f=1

Mf,s∑
m=1

Ef,s,m −
J∑

j=1

pj,s −
J∑

j=1

(Dj,s − Cj,s)

⎞
⎠ (9)

417

PEC =

S∑
s=1

J∑
j=1

(
ECProcess

s · pj,s
)

(10)

418

BEC =
S∑

s=1

J∑
j=1

(
ECBlocking

s · (Dj,s − Cj,s)
)· (11)

419

xj,f ∈ {0, 1}, ∀f ∈ Λ, ∀j ∈ Γ (12)

Fig. 1. (a) The Gantt diagram of HFSP with and without blocking constraints
from the same factory. (b) The Gantt diagram of HFSP with blocking constraints
in distributed environment.

420

yj,f,s,m ∈ {0, 1}, ∀f ∈ Λ, ∀s ∈ Ω, ∀j ∈ Γ,

∀m ∈ {1, 2, . . . ,Mf,s} (13)

421

zj1,j2,s ∈ {0, 1}, ∀s ∈ Ω, ∀j1, j2 ∈ Γ ∈ {0, 1} (14)

The objective is to minimize the total energy consumption of 422

all machines. Eq. (1) ensures that each job can only be assigned 423

to one factory for processing at most, and constraints (2) tell 424

that each job can only be processed by one machine at each 425

stage. Constraints (3) indicate that the completion time of each 426

job should not be less than its processing time. Constraint set 427

(4) ensures that due to the influence of blocking, the departure 428

time of the job is greater than or equal to its completion time. 429

Constraint set (5) defines that the completion time of a job in one 430

stage is equal to the processing time in the same stage plus its 431

departure time in the previous stage. Constraints (6) mean that 432

there is only one sequence between jobs j1 and j2. Constraint 433

set (7) represents that the completion time of one job is not less 434

than its processing time in the same stage plus its departure time 435

of its precursor. Constraint set (8) ensures that the shutdown 436

time of a machine at one stage is not less than the departure 437

time of the jobs on the same machine. Eq. (9) computes the 438

energy consumption of the machines which are at idle states. Eq. 439

(10) calculates the energy consumption of processing jobs. Eq. 440

(11) computes the calculation of the blocking time of machines. 441

Constraint set (12) ensures whether the job is assigned to the 442

factory. Constraint set (13) indicates whether the job is assigned 443

to a machine at a certain stage of a factory. Constraint set (14) 444

makes sure whether there is a sequence of two jobs processed 445

in the same stage. 446

B. Example Instance 447

To further illustrate different conditions with and without 448

blocking constraints in more detail, Fig. 1(a) shows the Gantt 449
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diagram of a simple example with five jobs and two stages in the450

same factory, each of which consists of two parallel machines in451

one stage. The horizontal axis is used to describe the completion452

time of jobs, and the vertical axis is used to indicate stages and453

machines. Relevant data are given as follows:454

pj,s =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 7

2 10

2 4

4 5

8 6

⎤
⎥⎥⎥⎥⎥⎥⎦

ECProcess
f,s = [5 7]

455

ECBlocking
f,s = [3 4] ECIdle

f,s = [2 1]

To expound the energy consumption with and without block-456

ing constraints, we take the case that is in Fig. 1(a) to elaborate457

processing status of the job sequence. Both the processing458

energy consumption of two cases are 19×5+32×7 = 319. The459

idle energy consumption of the first case (without blocking460

constraints) is 5×1=5, where the idle and blocking energy461

consumption of the second case (with blocking constraints)462

is 9×1+11×3 = 42. Therefore, the energy consumption of463

HFSP with and without blocking constraints are 361 and 324,464

respectively. It can be seen that due to the blocking constraints,465

these five jobs will waste 37 more energy consumption than the466

case without the same restrictions. To show that the distributed467

production environment can effectively reduce the energy waste,468

we allocate these five jobs to two factories for processing. As469

shown in Fig. 1(b), jobs 1 and 2 are assigned to factory 1, and470

jobs 3, 4, 5 are assigned to factory 2. Blocking conditions are471

eliminated after the allocation of 5 jobs. Moreover, the energy472

consumption caused by idle states is 5+10 = 15. Total energy473

consumption of scheduling in distributed environment is 319+15474

= 334, which consumes 27 less energy than HFSP with blocking475

constraints. The introduction of distributed scheduling mode can476

reduce the energy consumption caused by blocking constraints.477

Besides, with the increasing scale of jobs and stages, this kind478

of energy waste will also increase [24]. It shows the importance479

of a good scheduling strategy for the enterprise. Therefore, we480

can design highly efficient search strategies across and within481

factories to reduce blocking conditions.482

IV. PROPOSED ALGORITHM483

This section describes the proposed QIG algorithm in detail484

and it is divided into three main parts, i.e., initialization strategy,485

global search strategy, and local search strategy. To make readers486

understand this algorithm more clearly, the framework of QIG487

is provided in Algorithm 1.488

As shown in Algorithm 1, NEH_F (π) initialization strategy489

is used to allocate jobs to factories. The GlobalSearchStrategy490

operates the arrangement order of jobs in different factories. In491

the while loop, SelectionMechanism provides strategy selection492

guidance for all factories. In SelectionMechanism, each factory493

selects a certain local search strategy to execute, and the process494

is performed sequentially by factory number. When the opera-495

tion of SelectionMechanism is finished, GlobalSearchStrategy496

Algorithm 1: The Framework of The QIG Algorithm.

Require: π = {π1, π2, . . ., πJ}, parameters used in this
algorithm

Ensure: πbest and the corresponding energy consumption
EC

1: Initialization:
2: πtemp = NEH_F (π)
3: GlobalSearchStrategy(π, πtemp)
4: Algorithm Body:
5: while the termination criterion is not satisfied do
6: selectionMechanism(πtemp)
7: GlobalSearchStrategy(π, πtemp)
8: if f(πtemp) < f(π) then
9: π = πtemp

10: if f(π) < f(πbest) then
11: πbest = π
12: end if
13: end if
14: end while

for jobs, just as same as the strategy in initialization stage, will 497

execute again. At the end of the while loop, the current best 498

sequence is updated. If the termination condition is not reached, 499

the procedure will continue to execute the while loop. 500

A. Initialization Strategy 501

For the optimization of energy consumption in DHFSP with 502

blocking constraints, the quality of the initial solution will have a 503

direct impact on the later iteration. It can be seen from Algorithm 504

1 that QIG algorithm improves only one solution in the whole it- 505

erative process. Therefore, it is important to use a high-efficiency 506

initialization strategy to sort the job sequence. Nawaz, Enscore, 507

and Ham (NEH) [54] heuristic is an excellent heuristic algorithm 508

that is often embedded into some metaheuristics. Huang and Pan 509

et al. [55] used an algorithm, named NEH_F, which is based 510

on NEH and characteristics of multiple factories to solve the 511

allocation problem of jobs, and finally achieved good results. 512

Thus, to get a better solution, this paper introduces the NEH_F 513

method as the initialization strategy of QIG algorithm to allocate 514

jobs to all factories. The processing steps of NEH_F are as 515

follows. (1) At the beginning of the NEH_F strategy, a job 516

sequence = π = {π1, π2, . . ., πJ} is arranged in descending 517

order according to total processing time. (2) The first F jobs 518

are taken out from sequence and allocate them to F factories 519

one by one. (3) The remaining n-F jobs are extracted one by one 520

and inserted into the best position of all factories. The details of 521

NEH_F heuristic algorithm are presented in Algorithm 2. 522

B. Global Search Strategy 523

Cross-factory operations using the insert strategy to allocate 524

jobs usually spend a lot of time. In the process of scheduling 525

for different factories, blocking constraints will directly influ- 526

ence the completion efficiency of processing task and energy 527

consumption. Thus, to reduce the occurrence of blocking in 528
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Algorithm 2: NEH_F Heuristic Algorithm.

Require: π = {π1, π2, . . ., πJ}
Ensure: πtemp

1: Compute
∑S

s=1 pj,s, j = 1,2...,n
2: πtemp = Sort_descend(

∑S
s=1 pj,s), j = 1,2...,n

3: for j = 1→ F do
4: fj = πtemp

j

5: end for
6: for j = F+1→ n do
7: for f = 1→ F do
8: Extract the job πtemp

j from sequence πtemp and
insert into all the positions of factory f

9: Posj , ECf % the best position and the minimum
energy consumption

10: end for
11: Posbestj = arg(minF

f=1ECf )

12: Insert πtemp
j into the position Posbestj

13: end for

Algorithm 3: Global Search Strategy.

Require: π, πtemp, bool value flag = false
Ensure: πtemp

1: Set parameter: fmax %The factory that consumes the
most energy

2: ECold = EC(π)
3: Randomly select a factory frandom that is different from

the factory fmax

4: for j = 1→ n do
5: Randomly select a job from the factory frandom
6: Randomly select a job from the factory fmax

7: Swap positions of the two jobs in factories fmax and
frandom

8: ECnew = EC(πtemp)
9: if ECnew < ECold then

10: flag = true;
11: π = πtemp

12: else
13: πtemp = π
14: end if
15: end for

job sequence as much as possible and find the near-optimal529

solution more quickly and efficiently, we propose a global search530

strategy based on swap operator to sort jobs across factories. The531

proposed strategy can arrange a large number of jobs in a short532

time and can help the algorithm find a good solution. The steps533

for the global search strategy are as follows. (1) Based on the job534

sequence assigned by NEH_F, we first select the factory fmax535

with the highest energy consumption, and then randomly select536

another factory, denoted as frandom. (2) Randomly select one537

job from each of the two factories. (3) If the exchanged sequence538

is better than the original sequence, the original sequence is539

replaced. (4) After n iterations, the procedure ends. The pseu-540

docode of the global search strategy is shown in Algorithm 3.541

C. The New Selection Mechanism 542

In the iterative process, the processing environments of dif- 543

ferent factories are independent and closed to each other. A 544

factory may reduce more energy consumption through strategies 545

that are instructional in character. When the factory chooses 546

an inappropriate strategy, the quality of the solution is difficult 547

to improve and it is easy to fall into the local optimal state. 548

Reinforcement learning (RL) is an important machine learn- 549

ing algorithm [56]. RL uses scalar reinforcement reward to 550

interact with the complex environment [57], which maps the 551

actions executed to the environment, and continuously learns 552

new knowledge through the feedback to obtain the maximum 553

cumulative return. As a free mode learning method, algorithms 554

inspired by Q-learning idea [58] has been successfully applied 555

to optimization problems in recent years [31], [59]. In related 556

research, each factory completes the scheduling work inde- 557

pendently. The processing experience is difficult to share with 558

other factories, which leads to the isolation among factories. 559

To help enterprise break this isolated phenomenon, this paper 560

proposes a new selection mechanism inspired by Q-learning to 561

select appropriate the local search strategy for each factory with 562

blocking constraints. This selection mechanism can effectively 563

solve the occlusion problem among factories and improve their 564

production efficiency. The process of this selection mechanism 565

is described as follows: 566

Refer to [59], we first set up a new type of ‘Q-value table’ 567

to store the policy selection data of the factory. In the ’Q-value 568

table’, row represents different processing factories, column rep- 569

resents different local search strategies. The local search strategy 570

of each column corresponding to all factories is the same. At the 571

beginning of the iteration, strategies are randomly selected and 572

all values in the ‘Q-value table’ are set as 1. As the iteration 573

continues, the ’Q-value table’ is gradually updated according to 574

the sequence of row(factory) number, and if the Q-value in the 575

corresponding column changes, it indicates that the strategy is 576

implemented by the current factory. In the selection mechanism, 577

an execution step is performed by selecting strategies according 578

to the fitness value of each factory. In this paper, the fitness 579

value is set as the reciprocal of energy consumption. Similar 580

to the setting in reference [59], the Q-value update function 581

is indicated as Q(ft, strt) = (1− α)Q(ft, strt) + α(rt+1 + 582

γmax
a

Q(ft+1, strt+1)). The Q(ft, strt) value represents that 583

factory ft carry out the strategy strt, α indicates the learning 584

rate, γ indicates the discount rate, rt+1 represents the reward 585

value after carrying out the strategy, in the paper, it shows the 586

difference between the new and old fitness values. ft+1 and 587

strt+1 represent the next factory number and corresponding 588

strategy. Q(ft+1, strt+1) represents that choose the maximum 589

Q-value in factory ft+1 using strategy strt. 590

After the implementation of the corresponding strategy 591

in all factories, fitness values fitnessf of factory f should 592

be calculated according to the equation fitnessf = 1/ECf . 593

Then, factory numbers should be arranged in descending order 594

according to their fitness values, so that the factory with high 595

fitness value can be used as the guidance object for the previous 596

factory to provide strategy selection. After the sorting of fitness 597
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Algorithm 4: The New Selection Mechanism (Iteration ==
1).

Require: πtemp, strategy str ∈ {0, 4}
πtemp_f , % The sequence in factory f
fitnessoldf , f = 1, 2, . . ., F , % The fitness value of each
factory

Ensure: πtemp

1: for f = 1→ F do
2: Randomly select the strategy str for the πtemp_f

3: fitnessf () % Compute the fitness value of the
factory f

4: end for
5: Arrange in descending order according to the fitness

value of each factory, and new fitness is recorded as
fitnessnewfdo

6: Execute the equation Q(ft, strt) =
(1− α)Q(ft, strt) + α(rt+1 + γmax

a
Q(ft+1, strt+1))

to update the Q-value table
7: fitnessoldf = fitnessnewf

values, equation Q(ft, strt) = (1− α)Q(ft, strt) + α(rt+1 +598

γmax
a

Q(ft+1, strt+1)) is used to calculate the Q-value of each599

factory, which rt+1 = fitnessnewf − fitnessoldf , if the rt+1600

value is greater than 0, it means that using the strategy brings601

positive reward accumulation, otherwise, it has a negative ac-602

cumulation. In addition, to prevent the accumulation of reward603

value for only one strategy, we set a larger probability parameter604

value, noted as p. From the second iteration, we first randomly605

generate a value of [0-1]. If the value is less than 0.5, the606

strategy with the largest reward value max
a

Q(ft+1, strt+1) will607

be selected and executed. If not, a strategy will be randomly608

selected for execution. Through test results, we found that the609

method mentioned above can avoid the accumulation of reward610

value for only one strategy.611

The pseudocode of the new selection mechanism is shown in612

Algorithms 4 and 5.613

D. Local Search Strategy614

In the production scheduling workshop, the quality of the615

local solution also has a direct impact on the overall energy616

consumption. More efficient scheduling strategies can provide617

more possibilities for exploring broader search neighborhoods618

and finding better job sequences. To further improve the local619

search performance of the QIG algorithm, this paper presents620

five local search strategies to reduce the impact of blocking621

constraints on energy consumption. In the proposed local search622

strategies, there are four strategies based on swap operations,623

and two of these strategies are randomly are designed based on624

blocking constraints. The remaining two strategies are based625

on the randomness of the exchange of jobs. Finally, we in-626

troduce the destruction-reconstruction strategy of traditional627

IG algorithm as the fifth strategy. The proposed strategies can628

help the solution jump out of the local optimal and reduce the629

energy consumption of blocking by changing the order of the630

Algorithm 5: The New Selection Mechanism (Iteration !=
1).

Require: πtemp, strategy str ∈ {0, 4}
πtemp_f , % The sequence in factory f
fitnessoldf , f = 1, 2, . . ., F , % The fitness value of each
factory

Ensure: πtemp

1: for f = 1→ F
2: p = rand(), p ∈ {0, 1}
3: if p < 0.5 then
4: str = max

a
Q(ft+1, strt+1), πtemp_f = carryout(str)

5: fitenessf () % Compute the fitness value of the
factory f

6: else
7: Randomly select a strategy for the πtemp_f

8: fitenessf () % Compute the fitness value of the
factory f

9: end if
10: end for
11: Arrange in descending order according to the fitness

value of each factory, and new fitness is recorded as
fitnessnewf

12: Execute the equation Q(ft, strt) =
(1− α)Q(ft, strt) + α(rt+1 + γmax

a
Q(ft+1, strt+1))

to update the Q-value table
13: fitnessoldf = fitnessnewf

sequence. Moreover, the choice of strategy requires the use of the 631

new selection mechanism proposed in the previous subsection 632

C to improve the performance of these strategies as much as 633

possible. 634

As can be seen from Algorithms 6, 7 and 8, strategies 1 and 635

2 (str 1 and 2 for short) are designed based on blocking jobs. 636

In these two strategies, we first select two blocking jobs and 637

exchange their positions, then we get sequence πtemp_f_new. If 638

str 1 is executed and the new sequence πtemp_f_new is better than 639

the original sequence πtemp_f , the original sequence πtemp_f is 640

directly replaced by πtemp_f_new; If str 2 is executed and the 641

new sequence πtemp_f_new is better than the original sequence 642

πtemp_f , it continues to iterate on the basis of the original 643

sequence πtemp_f , at this time, πtemp_f is also replaced by 644

πtemp_f_new. When implement str 3 and str 4, we first set the 645

number of iterations as |πtemp_f |. In these two strategies, first, 646

two jobs with unequal positions are randomly selected for ex- 647

change. If execute the str 3 and a better sequenceπtemp_f ′_interval 648

is get, we update the new sequence by πtemp_f ′ = πtemp_f , then 649

continue to iterate until the end of the first level of the for loop. 650

At the end of the loop, if f(πtemp_f ′_interval) < f(πtemp_f ′), 651

πtemp_f ′ = πtemp_f ′_interval. If execute the str 4 and get a bet- 652

ter sequence πtemp_f ′_new, the πtemp_f ′ is directly replaced by 653

πtemp_f ′_new. str 5 uses destruction-construction strategy to 654

change current solution. First, d random jobs are extracted from 655

the original sequence πtemp_f ′ and inserted sequentially into 656

all positions in the sequence πtemp_f ′′ for testing, and finally, 657
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Algorithm 6: The Local Search Strategy (str == 1 or str
== 2).

Require: πtemp_f , bool flag = true, action str,
the number of the blocked jobs: countblock,
Ensure: πtemp_f

1: while flag == false do
2: for count = 1→ countblock do
3: πtemp_f_new = swap(πtemp_f) % Randomly swap

two blocked jobs in the πtemp_f

4: if f(πtemp_f_new) < f(πtemp_f) then
5: Case str == 1: πtemp_f = πtemp_f_new, flag = true
6: Case str == 2:
7: πtemp_f_interval = πtemp_f_new, πtemp_f_new =

πtemp_f , πtemp_f = πtemp_f_interval, f lag = true
8: else
9: πtemp_f_new = πtemp_f

10: end if
11: end for
12: end while

we select the sequence with the smallest energy consumption658

value as the new sequence πtemp_f ′ . If the energy consumption659

of πtemp_f ′ is better than πtemp_f , πtemp_f = πtemp_f ′ .660

V. EXPERIMENTAL RESULTS AND COMPARISONS661

A. Experiment Settings662

In this section, we evaluate the QIG algorithm for solving663

DHFSP with blocking constraints. To evaluate the performance664

of the new selection mechanism in this paper, we firstly com-665

pare the energy consumption with and without the selection666

mechanism. Then, we compare four existing classical intelligent667

optimization algorithms for solving related problems. Under the668

condition of the same running time, if the QIG can achieve the669

best results in most test cases, it can be proved that the pro-670

posed algorithm is effective to solve the DHFSP with blocking671

constraints.672

Refer to reference [55], we set the test set in 90 dif-673

ferent scale instances, and make f ∈ {2, 3, 4, 5, 6, 7}, n ∈674

{50, 100, 150, 200, 300} and s ∈ {5, 8, 10}. For each f × n× s675

combination, 30 replicas are generated and tested. The process-676

ing time pj,s is uniformly distributed in the range of [1, 30]. The677

number of parallel machines at all stages in each factory equals678

two. The energy consumption per unit time for idle, blocking,679

and processing are from uniform distribution ranges [1, 2], [3,680

4], and [5, 7], respectively.681

In the experiments, all the algorithms are coded in C++ in682

Visual studio 2019 and all the instances are run on a Pentium683

processor with 2.60 GHZ, Intel Core i7, and a 16 GB RAM684

under the Windows 10 operating system. For the sake of the685

comparison in reference [55], the stopping condition for all al-686

gorithms are set to the identical execution time, i.e., t = ω · n · s687

milliseconds, as the termination condition. In the condition, ω688

is a predefined parameter value, it is a parameter that controls689

the length of running time. In this paper, two values are set for690

Algorithm 7: The Local Search Strategy (str == 3 or str
== 4).

Require: πtemp_f , bool flag = true, action str,
the number of the blocked jobs: countblock,
Ensure: πtemp_f

1: πtemp_f ′_interval = πtemp_f

2: for j = 1→ |πtemp_f | do
3: πtemp_f ′ = πtemp_f

4: for i = 1→ |πtemp_f | do
5: if j �= i then
6: πtemp_f ′_new = swap(πtemp_f ′

j , πtemp_f ′
i )

7: end if
8: if f(πtemp_f ′_new) < f(πtemp_f ′) then
9: Case str == 3:

10: if f(πtemp_f ′_new) < f(πtemp_f ′_interval) then
11: πtemp_f ′_interval = πtemp_f ′_new,

πtemp_f ′ = πtemp_f

12: end if
13: Case str == 4: πtemp_f ′ = πtemp_f ′_new

14: end if
15: end for
16: Case str == 3:
17: if f(πtemp_f ′_interval) < f(πtemp_f ′) then
18: πtemp_f ′ = πtemp_f ′_interval

19: end if
20: end for
21: if f(πtemp_f ′) < f(πtemp_f) then
22: πtemp_f = πtemp_f ′

23: end if

Algorithm 8: The Local Search Strategy (str == 5).

Require: πtemp_f , bool flag = true, action str,
the number of the blocked jobs: countblock,
Ensure πtemp_f

1: Case str == 5: πtemp_f ′ = πtemp_f

2: Ud
i=1 = extract(πtemp_f ′)

3: for j = 1→ d do
4: πtemp_f ′′ = πtemp_f ′ \ Uj

5: πtemp_f ′′ insert ith posistion←−−−−−−−−−−−−
i=1 to |πtemp_f ′ |

Uj

6: πtemp_f ′ = argmin
|πtemp_f ′ |
i=1 f(πtemp_f ′′ )

7: end for
8: if f(πtemp_f ′) < f(πtemp_f) then
9: πtemp_f = πtemp_f ′

10: end if

parameter ω: 5, 10. n is the number of the job, s is the number 691

of the stage. The performance measure is calculated by relative 692

percentage increase (RPI) and the formula is shown in (15). The 693

RPI is used to estimate the difference between the current value 694

obtained and the best value. 695

RPI(i) = (ci − cbest)/cbest × 100 (15)

where ci is the average value of energy consumption obtained 696

by the algorithm i, cbest is the best energy consumption value 697
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TABLE I
RESULTS FOR THE MILP MODEL

that has been found in all of these compared algorithms. We first698

calculate RPI of each instance, and then compute the average699

values of RPI for all the instances. It is notable that the range700

of RPI value obtained by the different scale, respectively, has a701

little difference according to the simulation experimental results.702

Thus, in the following tables, “mean” value that is the average703

values of RPI of all the instances, and can be calculated to test the704

overall performance of algorithms. In addition, we give the best705

energy consumption of each algorithm in Tables II–V, where the706

best results of the algorithms are marked in bold.707

B. Verification of the MILP Model708

In this section, we run 12 instances to verify the MILP709

model and the performance of QIG algorithm. The MILP model710

of the DHFSP with blocking constraints is solved by Gurobi711

in PyCharm software, using the python as the programming712

language to find a feasible solution. The running time is set713

as 3600 s. Table I summarizes the simulation results of 12714

instances. In Table I, time represents the computation time cost715

of the instance. For each instance, the number of constraints716

is reported that indicates the complexity of the problem. The717

Energy consumption express the optimal value of the MILP and718

QIG algorithm. Symbol ‘/’ means that the solution cannot be719

found within 3600 s, and black bold font indicates the best720

results. Gap=0 indicates that the optimal solution is found.721

The smaller the Gap value, the better solution is. However,722

for a minimization model, Gap is computed as (ObjVal-lower723

bound)/ObjVal, where ObjVal is the objective value for the724

current solution, and the lower bound is a bound of the best725

possible objective obtained by using branch-and-bound method726

of Gurobi. Thus, if the gap is not equal to 0, it does not mean727

that no optimal solution is found.728

As can be seen from Table I, due to the complexity of DHFSP729

with blocking constraints and time limit, both MILP and QIG730

algorithm can not find the same value as lower bound values.731

Except for these 2_8_2, 2_12_2, and 3_16_2 instances, the732

MILP model obtains better solutions than QIG algorithm, in733

the following 9 instances of different scales, the QIG algorithm734

achieves better objective values in much less time. With the735

number of jobs, factories and stages increasing, the number of736

constraints in MILP model is also increasing dramatically. Sim-737

ilarly, the Gap value is also increasing. Through the experiment,738

we found that in the last four large scale examples, the MILP739

model could not find a feasible solution in 3600 s, while QIG740

could still give a feasible solution in a relatively short time, which741

means that when the problem size increases to a certain extent,742

the MILP model is not suitable for solving, which is also a major743

reason why we propose a meta-heuristic algorithm, i.e., the QIG 744

algorithm, to solve the DHFSP with blocking constraints. 745

After experimental analysis, the reason why the QIG algo- 746

rithm proposed in this paper can solve this problem may be: 747

the idle and blocking state of machines become more, and the 748

optimal solution is getting harder and harder to find. Moreover, 749

all machines start at 0 time, when a job is assigned to a new 750

machine, it is necessary to calculate the idle energy consumption 751

of the machine from time 0 to process the first job. Therefore, 752

the system will balance whether to vacate the machine to reduce 753

the idle time of the machine. It is also the reason that greatly 754

increase the computational complexity of the algorithm. From 755

Table I, it is clear that the MILP model is able to find an optimal 756

solution for small instances. However, when the scale becomes 757

large, the model can not find the optimal solution in less time, or 758

even can not find the feasible solution. Thus, we believe that the 759

proposed QIG algorithm is more suitable than MILP for solving 760

large-scale and complicated instances. 761

C. Performance Analysis of the QIG Variants 762

To investigate the effectiveness of the global search strategy 763

and proposed selection mechanism, we compare the situations 764

that do not include these strategies. In the variant without the 765

selection mechanism, all local search strategies are selected by 766

random seeds. Similarly, the variant without the global search 767

strategy indicates that remove the strategy both in initialization 768

stage and iterative while loop. Among these algorithms, None- 769

Selection mechanism (NO_S) represents the QIG algorithm 770

without the new selection mechanism. None-Global search strat- 771

egy (NO_G) represents the QIG algorithm without the global 772

search strategy. In Tables II and III, the number of factories (f), 773

jobs (n) and stages (s) are different, wherein the best values are 774

marked in bold, respectively. For each instance, the termination 775

criterion parameter ω is set to 10. All algorithms are repeatedly 776

executed 30 times, and the best value is selected for comparison. 777

As can be seen from results in Table II, compared to the NO_S 778

algorithm, QIG obtains 57 best results, NO_S obtains 33 best 779

results. The number of best values obtained by QIG is nearly 780

double than that of the NO_S algorithm. In the six mean sets, 781

QIG gets 5 best results and NO_S gets only 1 best result. The rea- 782

son may be that the new selection mechanism effectively solves 783

the problem of experience occlusion between factories and help 784

them choose the appropriate strategy to improve their production 785

efficiency. Under the mechanism of sharing experience in dif- 786

ferent factories, the energy consumption value of the factory can 787

be reduced. By observing results shown in Table III, QIG shows 788

outstanding performance and outperforms the NO_G in all tests. 789

The reason may be that the global search strategy can effectively 790

explore the wide irregular range and promising neighborhood, 791

and improve the search ability of the QIG algorithm. Energy 792

consumption caused by blocking constraints is reduced. 793

According to above results and analysis, the main advantages 794

of the proposed strategies are as follows: 795

1) The scheduling order of jobs in each factory is dif- 796

ferent, which will cause varying degrees of energy 797

consumption. The proposed local search strategies can 798
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TABLE II
RESULTS FOR THE ENERGY CONSUMPTION WITH AND WITHOUT

SELECTION MECHANISM

reduce the blocking conditions of jobs by adjusting the799

sequence order appropriately with the selection mecha-800

nism. It can improve the performance of QIG algorithm in801

big search neighborhoods, and increase the quality of the802

solutions.803

2) In different periods of the iteration, using a reasonable804

local search strategy will produce a good result. The805

new selection mechanism chooses the appropriate strategy806

at the right time with the probability selection, which807

can effectively improve the production efficiency of each808

factory, reducing the energy consumption caused by the809

blocking constraints.810

3) Jobs in different factories will have a direct impact on the811

energy consumption of the enterprise. Consider using a812

strategy based on cross-factory swap operation of jobs,813

which facilitates faster access to promising solutions in814

a shorter period of time, greatly improving the efficiency815

and performance of algorithm execution.816

D. Comparisons With the Presented Efficient Algorithms817

In this section, we compare energy consumption and RPI818

values of different algorithms. The parameterω is set to 5 and 10,819

respectively. All algorithms run in the same termination condi-820

tion. The specific settings have been illustrated in subsection A.821

TABLE III
RESULTS FOR THE ENERGY CONSUMPTION WITH AND WITHOUT GLOBAL

SEARCH STRATEGY

To verify the performance of the proposed algorithm, we 822

compare the QIG algorithm to four different optimization al- 823

gorithms, i.e., the CRO [26], the IG [43] for DPFSP, the 824

DPSO [22] for HFSP, and the modeling and multi-neighborhood 825

IG (MN-IG) [12] for DHFSP. These comparison algorithms have 826

shown great performance in solving related problems. To show 827

the performance of these comparison algorithms, experiment 828

parameters are set according to the original literature. CRO 829

generates many solutions during initialization. In each solution, 830

the factory is assigned to the job. Among them, the initialization 831

of one solution uses NEH_F heuristic, while the arrangement 832

order of other solutions is generated randomly, but the position of 833

job insertion is still based on the minimum energy consumption 834

value in all positions. Other operations are carried out according 835

to the original literature. IG and MN-IG algorithm also utilize the 836

NEH_F heuristic to get an initial solution, and other operations 837

are as same as the original paper. Due to the DPSO algorithm is 838

used for solving the HFSP, there is no factory assigned strategy 839

in the original literature. Thus, in this paper, we utilize some 840

methods for assigning the jobs to factories in these initial solu- 841

tions. For these solutions, one solution is generated by using the 842

NEH_F heuristic. The other one is to first assign a number of jobs 843

equal to the number of factories, then extract one remaining job 844

at a time and place it at the end of the sequence in all factories to 845

test which factory has the smallest energy consumption. Finally, 846

we choose the location with the smallest objective value to 847
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TABLE IV
ENERGY CONSUMPTION AND RPI VALUES FOR T = 5 NS MILLISECONDS

insert. This step stops until all jobs are assigned to factories. The848

rest solutions are produced by replacing the descending order in849

NEH_F with ascending order. and the other steps are the same850

as the original NEH_F. After the initialization is completed, the851

remaining operations are performed according to the original852

literature. For the proposed QIG algorithm in this paper, through853

simulation tests, we find that the setting value of parameters in854

these sub strategies has little effect on the final results, and there855

is no significant difference between solutions. Finally, after the856

consideration based on results, we set the parameter learning rate857

α= 0.5, the discount rate γ = 0.8, and the number of destruction858

jobs d = 3 [32].859

In addition, to evaluate different degrees of results between860

two algorithms in statistics, we perform Wilcoxon rank-sum861

tests with the significance level of 0.05 to examine whether there862

is a significant difference between the comparison algorithm863

TABLE V
ENERGY CONSUMPTION AND RPI VALUES FOR T = 10 NS MILLISECONDS

and the QIG. In Tables IV and V, the symbol ‘†’ represents 864

that best result whether is significantly different from the QIG 865

algorithm. If there is no symbol identification between these two 866

algorithms, the difference is not significant. 867

It can be seen from formula (12), ci is the value for the 868

current algorithm, cbest is obtained from the best result of all 869

algorithms. According to Tables IV, and V, QIG algorithm 870

achieves the best value in each scale, and its RPI values are 871

all minimum in all repeated experiments. In addition, for results 872

of Wilcoxon rank-sum tests with the 0.05 significance level, 873

the significance level of any algorithm compared to the QIG 874

is far less than 0.05, indicating that comparison algorithms are 875

significantly different from the QIG algorithm. According to 876
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Fig. 2. The convergence curves of compared algorithms.

simulation results, the QIG algorithm substantially outperforms877

comparison algorithms.878

These results mentioned above show advantages of the QIG879

algorithm, the reasons are as follows:880

1) The proposed strategy improves the diversity of the algo-881

rithm while maintaining the local search ability of the original IG882

algorithm, and the reordering of jobs can greatly reduce blocking883

conditions.884

2) The proposed global search strategy greatly improves the885

quality of the solution by exchanging jobs across factories886

quickly, and helps find a better solution in the big search neigh-887

borhood, so as to reduce the energy consumption.888

3) The new selection mechanism embedded in the IG al-889

gorithm helps the factory choose the appropriate strategy at a890

reasonable time. It enables experience sharing and interaction891

among factories and reduces inappropriate policy choices.892

E. Convergence Curves and Confidence Intervals893

In this section, we further evaluate the performance of algo-894

rithms. To give the convergence graphic display of all compar-895

ison algorithms, we select two representative examples, where896

scales (f × n × s) are 5×50×8, 2×100×10, respectively. As897

shown in Figs. 2(a) and (b), convergence curves of these al-898

gorithms use different colors and symbols, ordinate represents899

the energy consumption value of the job sequence, and abscissa900

Fig. 3. Interactions for CRO, DPSO, IG, MIN_IG, and QIG. (a) Interactions
of all the compared algorithms. (b) Interactions of algorithms and factory.
(c) Interactions of algorithms and stage. (d) Interactions of algorithms and the
number of jobs.

represents the execution time of the algorithm (unit: millisec- 901

onds). These two examples represent changes in the convergence 902

performance of algorithms respectively when the problem scale 903

is continuously expanded. 904

To have a clear identification of results, we give the ANOVA 905

analysis of all algorithms. As shown in Fig. 3(a)–(d), mean plots 906

and interactions plots with 95% HSD intervals represent the 907

average level and overall performance of algorithms. HSD is a 908

method that can compare the average values of each pair. LSD 909

uses t-test to perform all pairwise comparisons between group 910

means. It verifies that there is a significant difference between 911

two values. Subfigures 3(a), 3(b), 3(c), and 3(d) represent types 912

of RPI, factory, stage and job number, respectively. RPI means 913

the gap between different algorithms and the best value at each 914

scale. All algorithms are executed when ω = 10. 915
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Fig. 4. Gantt charts of the QIG algorithm.

As can be seen from Fig. 2(a) and (b), the initial solution of916

QIG algorithm is better than other algorithms, because the global917

search strategy greatly improves the quality of the initial solution918

by swapping jobs across factories. In the whole iteration process,919

some algorithms, such as CRO, IG and MN-IG, which are easy920

to fall into local optimal, while the local search strategy selected921

by proposed selection mechanism improves the performance of922

the QIG algorithm. The QIG algorithm combines with the global923

search strategy, to a certain extent, it prevents the solution from924

falling into local optimum. In Fig 3(a), the difference of RPI925

value obtained by QIG algorithm between the best value and the926

worst value is very small, and it shows that the QIG is the best927

one among all algorithms. From Fig. 3(b)–(d), we can further928

see that the stability and performance of the proposed algorithm929

is superior than other comparison algorithms, then MN-IG, IG,930

CRO, DPSO follows with the good performance. Obviously,931

IG series of algorithms are better for solving the DHFSP with932

blocking constraints, and QIG algorithm achieve best results933

among them. All in all, through four test instance subgraphs, we934

can intuitively see that the proposed QIG gets the best energy935

consumption value of job sequence.936

F. Gantt Charts of the QIG Algorithm937

To intuitively observe the processing sequence and block-938

ing status of jobs in different factories, we provide the Gantt939

charts of the 2×50×5 (f × n × s) instance. The advantage of940

drawing Gantt chart is that it can provide the optimal schedul-941

ing scheme for the factory managers and help them make the942

right decisions. Fig. 4(a), and (b) show Gantt charts of two943

identical factories when ω = 10, respectively. In these Gantt944

charts, the abscissa represents the completion time of jobs, and945

the ordinate represents different machine numbers at different946

stages. Each job has unique color and number. Through the 947

experimental test, the minimum energy consumption in this 948

example is 25087. The order of the processing jobs in factory 1 949

is 38-3-21-44-34-4-1-40-13-17-31-5-22-20-30-2-24-15-47-46- 950

49-36-41-16-9. The order of the processing jobs in factory 2 951

is 35-32-29-14-26-23-7-39-25-45-48-27-19-10-37-18-12-8-11- 952

50-43-33-6-42-28. The completion times of the two factories are 953

275 and 309 respectively. 954

VI. CONCLUSION 955

In this paper, we design an effective QIG algorithm to solve 956

the DHFSP with blocking constraints with minimizing the en- 957

ergy consumption. This work contributes to the scheduling and 958

allocation of the distributed hybrid flow shop. To solve the 959

DHFSP with blocking constraints, we proposed an improved 960

QIG algorithm. From extensive simulation tests, it can be seen 961

that the QIG algorithm is superior to other compared algorithms 962

in solution quality and search ability. The outperformance of 963

the QIG algorithm is mainly attributed to the following aspects: 964

1) The proposed global search strategy helps the algorithm to 965

generate a good initial solution, so that it has a greater probability 966

to find the near-optimal solution than other algorithms in the iter- 967

ative process. Moreover, the strategy improves the global search 968

ability of the algorithm, and prevents the solution from falling 969

into the local optimum: 2) A new selection mechanism inspired 970

by Q-learning is embedded into IG algorithm to help factories 971

make a reasonable strategy choice at the certain moment. It helps 972

the enterprise break the closed states of each factory: 3) All 973

five local search strategies are designed for blocking constraints 974

in a single factory, and the energy consumption is reduced by 975

continuously rearranging jobs. It demonstrates the effectiveness 976

of the proposed strategies to solve the DHFSP with blocking 977

constraints. 978

In future research, the proposed QIG algorithm can be further 979

explored to solve other types of the DHFSP with various con- 980

straints, such as lot-streaming, setup time, assembly, and some 981

uncertain scheduling problems. Besides, for the DHFSP, we will 982

expand the optimization goal from single to multiple, such as the 983

maximum completion time. However, the implementation of this 984

algorithm is somewhat complicated, such as the combination of 985

selection mechanism and local search strategy, which will be 986

further optimized later. Next, we will redesign the appropriate 987

strategies to solve the problem according to characteristics of the 988

problem. It is also meaningful to integrate the intelligent method 989

into the strategy to realize a self-learning mode. 990
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