
Expert Systems With Applications 201 (2022) 117256

Available online 18 April 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.

A collaborative iterative greedy algorithm for the scheduling of distributed
heterogeneous hybrid flow shop with blocking constraints

Hao-Xiang Qin a, Yu-Yan Han a,*, Yi-Ping Liu b, Jun-Qing Li c, Quan-Ke Pan d, Xue-Han a

a School of Computer Science, Liaocheng University, Liaocheng 252059, PR China
b The College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, PR China
c School of Information and Engineering, Shandong Normal University, Jinan 250014, PR China
d School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, PR China

A R T I C L E I N F O

Keywords:
Blocking
Distributed heterogeneous hybrid flow shop
problems
Collaborative iterative greedy algorithm
Energy efficiency

A B S T R A C T

The hybrid flow shop and distributed flow shop problems have been extensively studied due to their wide in-
dustrial applications. However, the distributed heterogeneous hybrid flow shop problems (DHHFSP) with
blocking constraints have not yet been well studied up to date. This paper considers how to arrange a variety of
jobs to different heterogeneous factories, and each factory has a minimal makespan. The innovations of this
paper lie in presenting a mathematical model of the DHHFSP with blocking constraints and designing a
collaborative iterative greedy (CIG) algorithm. The CIG contains the problem-specific initialization strategy, the
neighborhood search strategy, the destruction-reconstruction strategy, and the local intensification strategy. The
cross-factory and inner-factory neighborhood search strategies based on two swap operators are adopted to reduce
the blocking time. The local intensification strategy is developed to optimize the scheduling sequence of each
factory. The proposed algorithm is empirically compared with five state-of-the-art algorithms on 60 different
instance sets. The experimental results show that the proposed algorithm significantly outperforms the compared
ones in terms of objective values and relative percentage deviation values.

1. Introduction

1.1. Distributed hybrid flowshop scheduling

With the development of economic globalization, the cooperation
between different enterprises is getting increasingly close. This coop-
erative feature is more evident in the flow shop scheduling problems.
The traditional centralized manufacturing mode has been difficult to
flexibly satisfy the current market demand (Shao et al., 2020). To
respond to the rapidly changing global markets, the distributed or multi-
plant manufacturing mode is used to improve enterprises’ resource
utilization and production efficiency (Wang and Wang, 2020). As a
variant of the traditional permutation flow shop scheduling problem
(PFSP), the distributed permutation flow shop scheduling problem
(DPFSP) is more complex than PFSP (Li et al., 2020).

To further improve the processing efficiency of the products, enter-
prises begin to embed an efficient production mode, i.e., the identical
parallel machine scheduling into each factory. This mode is a flexible
flow shop routing and is usually called hybrid flow shop scheduling

(HFS) (Ztop et al., 2019; Fernandez-Viagas and Framinan, 2020), which
can handle multiple jobs simultaneously as long as the machine loads
are not exceeded (Liu, et al., 2019). In each stage of HFS, there are m (m
≥ 1) machines in parallel that process the jobs. Some published litera-
tures have proved that this scheduling method can process more jobs in a
shorter time and reduce the production cost of enterprises (Wang et al.,
2015; Feng et al., 2016). Up to now, the HFS mode has been successfully
used to solve real-world problems, such as the transistor-liquid crystal
displays (Choi et al., 2011), steelmaking and refining (Long et al., 2018;
Peng et al., 2018), etc. Combining the respective advantages of DPFSP
and HFS, a scheduling mode with more practical application, that is, the
distributed hybrid flowshop scheduling (DHFS) came into being. Obvi-
ously, this cross-factory scheduling method with parallel production
lines is more efficient.

1.2. Distributed heterogeneous hybrid flowshop scheduling with blocking
constraints

In the actual processing environment, decision makers are likely to

* Corresponding author.
E-mail address: hanyuyan@lcu-cs.com (Y.-Y. Han).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.117256
Received 29 October 2021; Received in revised form 11 March 2022; Accepted 13 April 2022

mailto:hanyuyan@lcu-cs.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.117256
https://doi.org/10.1016/j.eswa.2022.117256
https://doi.org/10.1016/j.eswa.2022.117256
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117256&domain=pdf

Expert Systems With Applications 201 (2022) 117256

2

build factories with different processing capacity according to cost
input, production planning, target groups or other reasons, so as to
better adapt to the processing conditions in different environments.
Although the problem becomes complex, it benefits reducing the pro-
duction lead time and the work-in-process inventory, interim storage,
and associated space requirements. In addition, the research is also
motivated by a practical engineering case of the heterogeneous factories
(Shao et al., 2021). In this problem, different factories have different
numbers of processing machines in each stage, which leads to the het-
erogeneous phenomenon of factories. Therefore, this paper also con-
siders the difference in the number of machines as the reason for the
heterogeneity of factories.

Furthermore, in the actual processing factory, due to the storage
space, process characteristics, or technical reasons (Ribas et al., 2011),
when the number of jobs exceeds the machine’s load capacity, they will
be blocked in the current processing stage, resulting in invalid work of
the machines and extension of completion time. The problem is also
named distributed heterogeneous hybrid flow shop scheduling problem
(DHHFSP) with blocking constraints. This also encourages us to design
appropriate scheduling schemes to reduce the makespan caused by
blocking.

1.3. Motivations

Considering the problem characteristics of DHHFSP with blocking
constraints, some sub-problems should be considered, such as the
sequence sort, factory allocation, machine selection, and blocking con-
dition of jobs, need to be addressed simultaneously. Since the sub-
problems are highly coupled, it is natural to design neighborhood-
based metaheuristics that implement different strategies. As we know,
metaheuristics are often used to solve flow shop scheduling problems,
and have achieved good performance. As a kind of metaheuristic algo-
rithm, Iterative Greedy (IG) algorithm has been used by many scholars
to solve the related flow shop scheduling problems due to the small
number of parameters, easy operation and simple process (Ruben et al.,
2007). Different from other metaheuristic algorithms, this algorithm
iterates only one solution in the whole process, which makes it better to
explore the solution more deeply. Moreover, IG algorithm has strong
local search ability due to its greedy insertion strategy, but it has also
become a limiting factor of the algorithm, resulting in the reduction of
the diversity of solutions.

Based on the above advantages and limit, this paper proposed a
collaborative IG (CIG) algorithm to solve the DHHFSP with blocking
constraints. In CIG, a new initialization scheme is used to assign
different jobs to the heterogeneous factories. Then, two cross-factory
neighborhood strategies are presented to reorder the jobs. Next, we
perform the destruction and reconstruction operation on the job
sequence in each factory and suggest a local intensification strategy to
further reduce the makespan. Finally, these two solutions conduct the
substitution operations on the inferior solution for the following loop of
the iteration.

The contributions of this paper are as follows.

1) Formulate the DHHFSP with blocking constraints and set up a mixed-
integer linear programming (MILP) model.

2) For reducing the influence of unnecessary blocking constraints on
machining, the CIG algorithm is presented to solve the DHHFSP with
blocking constraints, in which the Nawaz–Enscore–Ham-Increase
(NEH_IN) initialization strategy is designed to allocate the jobs to the
heterogeneous factories.

3) To further improve the global search ability of the algorithm and
reduce the blocking conditions of the sequence, this paper present
the cross-factory and inner-factory neighborhood search strategies,
respectively, to cooperatively optimize the scheduling sequence.

4) To reinforce the exploration ability of CIG algorithm and reduce the
completion time of jobs, this paper develops the local intensification
strategies to adjust the order of the job sequence in each factory.

The rest of this paper is organized as follows. In Section 2, compre-
hensive literature reviews are presented. In Section 3, the MILP model of
the DHHFSP with blocking constraints is formulated. Section 4 explains
the proposed CIG algorithm, including the framework and the details of
the strategies. Section 5 tests the parameters and strategies of the CIG
algorithm and compares it to state of the arts algorithms. The conclu-
sions of this paper and future research direction are provided in Section
6.

2. Literature review

Many intelligent algorithms are proposed to solve the DPFSP. Deng
and Wang (2016) presented a competitive memetic algorithm to solve
the multiobjective DPFSP. Fu et al. (2019) proposed a new multi-
objective brain storm optimization algorithm to solve the DPFSP with
total tardiness constraint. Considering the assembly of jobs, Lin et al.
(2017) used the backtracking search hyper-heuristic for solving the
DPFSP. In (Wang et al., 2020), a multiobjective whale swarm algorithm
is suggested to optimize the objective of energy-efficient in DPFSP.
Considering the sequence-dependent setup times, Huang et al. (2020)
presented an effective IG algorithm to solve it. In (Fernandez-Viagas
et al., 2018; Bargaoui et al., 2017), an iterative improvement algorithm
and a chemical reaction optimization algorithm are proposed to mini-
mize the total flowtime and makespan of the DPFSP, respectively. In
addition, Pan et al. (2020) proposed a cooperative co-evolutionary al-
gorithm for the DPFSP with group to minimize the makespan.

Since the HFSP was raised in 1973 (Salvador, 1973), a wide range of
scholars have propsed many efficient intelligent optimization algo-
rithms to solve it. Li et al. (2018) proposed the energy-aware multi-
objective optimization algorithm for HFSP with the energy
consumptions and makespan minimization. Given the setup energy
consumption, Zhang et al. (2019) developed a multiobjective evolu-
tionary algorithm with decomposition to solve the HFSP. Considering
the worker constraint, the multiobjective evolutionary algorithm based
on heuristic decoding was proposed for the HFSP (Han et al., 2020). In
(Marichelvam et al., 2019), a discrete particle swarm optimization
(DPSO) algorithm was designed to solve the HFSP with the human
factors. In (Yu et al., 2018), the genetic algorithm (GA) is used for
solving the HFSP with machine eligibility and unrelated machines. Ztop
et al. (2019) presented four variants of IG algorithms and a variable
block insertion heuristic to solve the HFSP to minimize the total flow
time. Qin et al. (2019) developed the genetic programming-based
scheduling algorithm to solve the HFSP with waiting time and batch
processor constraints.

Up to now, the research on the combination of distributed factory
and parallel machine scheduling is still rather limited. As far as we
know, the existing algorithms about the DHFSP are proposed by Shao
et al. (2020), in which the modeling and multi-neighborhood IG algo-
rithm was proposed to optimize the makespan. Zheng et al. (2020)
developed the cooperative coevolution algorithm for solving the mul-
tiobjective fuzzy DHFSP. Considering the multiprocessor tasks, Cai et al.
(2020) designed a dynamic shuffled frog-leaping algorithm to solve the
DHFSP. To minimize the makespan of the job sequence, Li et al. (2020)
used the hybrid discrete artificial bee colony (DABC) algorithm to solve
the DHFSP with deteriorating jobs. Given the distributed heterogeneous
factories, an improved artificial bee colony algorithm is proposed to
solve the DHHFSP with sequence-dependent setup times (Li et al.,
2020).

In view of these blocking constraints, many efficient algorithms have
been proposed to address the related problems. Riahi et al. (2017)
developed a scatter search for the mixed BFSP. Han et al. (2019)
designed the evolutionary multiobjective robust scheduling algorithm to

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

3

solve the blocking lot-streaming FSP. Ribas et al. (2015) designed a
DABC algorithm to solve the blocking FSP (BFSP) with the objective of
total flowtime minimization. Later, the IG algorithm was proposed to
solve the total tardiness parallel BFSP (Ribas et al., 2019). Zhang et al.
(2018) utilized the discrete differential evolution (DDE) algorithm to
optimize the makespan of the distributed blocking flow shop scheduling
problem (DBFSP). For the distributed fuzzy BFSP, some effective heu-
ristics and metaheuristics have been developed to solve this problem
(Shao et al., 2020). In (Zhao et al., 2020), to minimize the makespan, an
ensemble DDE is presented for solving the DBFSP. Considering the setup
time of the BFSP, Han et al. (2020) proposed the discrete evolutionary
multiobjective optimization algorithm to optimize the makespan and
energy consumption.

As we can see, the DFSP, the HFSP, and the BFSP have received much
attention in recent years. However, the DHFSP under the blocking and
heterogeneous environment has not been addressed. Due to its practical
relevance, it is worthwhile to develop effective and efficient algorithms
for the above problem.

3. Problem formulation

In DHHFSP with blocking constraints, there are F heterogeneous
factories, and each factory has the same number of processing stages. In
one factory, at least one stage has identical, unrelated parallel machines.
In stage s of the factory, there are m (m ≥ 1) machines with no buffers to
store the processed jobs. Each machine is available and without break-
downs. A series of n jobs have to be processed on one of these F factories.
Each job is processed orderly in the sequential stages. Once the job is
determined to be processed in one machine of the stage, it can not be
interrupted. In a word, the DHHFSP with blocking constraints consists of
three subproblems, i.e., scheduling and sorting of jobs, selecting fac-
tories for jobs, and assigning machines to jobs. The optimization
objective of the DHHFSP with blocking constraints is the makespan.
Based on these definitions and literature (Wang and Wang, 2020), this
paper gives the MILP model of the DHHFSP with blocking constraints.

Parameters and sets:
J: The number of jobs.
F: The number of factories.
S: The number of stages in each factory.
j: The index of jobs,j ∈ {1,2, ...,J}.
f : The index of factories,f ∈ {1,2, ...,F}.
s: The index of stages,s ∈ {1,2, ...,S}.
m: The index of machines at each stage.
mf ,s: The number of parallel machines at stage s in factoryf .
pj,s: The processing time of job j at stages.
Decision variables:
Cmax: The makespan of the sequence.
Bj,s: The beginning time of job j at stages.
Cj,s: The completion time of job j at stages.
Dj,s: The departure time of job j at stages.
xf ,j: Decision variables, 1 if the job j is processed in factoryf ,

0 otherwise.
yf ,s,j,m: Decision variables, 1 if the job j is processed on machine m at

stage s in factoryf , 0 otherwise.
zf ,s,j,j′ : Decision variables, 1 if job j is at any position before job j′ at

stage s in factoryf , 0 otherwise.
Objective:

MinimizeCmax (1)

Constraints:

Table 1
Processing time of different jobs in each stage.

Job Stage1 Stage2

1 5 15
2 7 7
3 12 3
4 3 5
5 3 3
6 6 13

Fig. 1. Gantt charts of different scenes. (a) and (b) are the comparison of the
different scheduling sequence under same factory configurations. (b) and (c)
are the comparison of the same scheduling sequence under the different ma-
chine configurations of each factory (heterogeneous factories).

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

4

∑F

f=1
xf ,j = 1, ∀j (2)

∑mf ,s

m=1
yf ,s,j,m = xf ,j,∀f , j, s (3)

Bj,s⩾0, ∀j, s (4)

Cj,s = Bj,s + pj,s, ∀j, s (5)

zf ,s,j,j′ + zf ,s,j′ ,j⩽1, ∀f , s, j ∕= j′ (6)

zf ,s,j,j′ + zf ,s,j′ ,j⩾yf ,s,j,m + yf ,s,j′ ,m − 1,
∀f , s, j′ ∕= j,m ∈

{
1, 2...,mf ,s

} (7)

Bj′ ,s − Dj,s + U⋅
(
3 − yf ,s,j,m − yf ,s,j′ ,m − zf ,s,j,j′

)
⩾0,

∀j ∕= j′ , f , s,m ∈ \{ 1, 2...,mf ,s\}
(8)

Dj,s = Bj,s+1,∀j, s ∈ {1, ..., S − 1} (9)

Cj,s <= Dj,s,∀j, s (10)

Cmax >= Dj,S, ∀j (11)

Equation (1) is the optimization objective of the problem. Constraint
(2) determines that each job can only be assigned to one factory.
Constraint (3) ensures that a job that allocated to one factory must be
processed by one machine at each stage. Constraint (4) describes that the
start time of the job at each stage is not less than 0. constraint (5) shows
that the completion time of one job at each stage equals to the sum of its
start time and processing time. Constraints (6–7) ensure that the ma-
chine can only operate one job at one time and the job can only be
processed by one machine. Constraint (8) indicates that the job can be
processed only when its previous job is completed in the same machine.
Constraint (9) defines that, except the last stage, the start time of the job
equals to the departure time of its previous stage, and Constraint (10)
expresses that the departure time of the job is not less than its comple-
tion time at the same stage. Constraint (11) ensures that the makespan is
not less than all of the jobs’ departure time at the last stage.

To help readers understand the impact caused by different sequence
and allocation of jobs more intuitively, this paper gives the Gantt charts
with two heterogeneous factories, two stages, and six jobs to exemplify
the process. The processing time of each job is given in Table 1. In
factory 1, there is one machine in stage 1 and two parallel machines in
stage 2. In factory 2, two parallel machines are set in stage 1, and one
machine is set in stage 2. All the jobs have the same processing time in
the same stage.

In Fig. 1 (a), the job sequence is π = {1, 2, 4; 3, 5, 6}, which illustrates
the jobs 1, 2, and 4 are assigned to process sequentially in the first stage

of factory 1, while jobs 3, 5, and 6 are processed in the first stage of
factory 2. In Fig. 1 (b), the job sequence is π = {1, 3, 6; 2, 4, 5}, which
shows that jobs 1, 3, and 6 are allocated to process sequentially in the
first stage of factory 1, while jobs 2, 4, and 5 are processed sequentially
in the first stage of factory 2. As shown from Fig. 1 (a) and (b), the
different scheduling sequences make the makespan objective different
under the same environment. the makespan of sequence {1, 2, 4; 3, 5, 6}
and {1, 3, 6; 2, 4, 5} are 25 and 36, respectively. The gap is quite large
between these two scheduling schemes. Moreover, with the continuous
expansion of jobs’ scale, the gap (sum of time interval which machines
are in idle and blocking state) may expand due to a bad arrangement
order. Therefore, it is essential to design reasonable scheduling strate-
gies to help enterprises reduce makespan.

The scheduling sequence of Fig. 1 (c) is the same as Fig. 1(b).
However, the machine configuration is different. That is, the factories
are heterogeneous. By comparing Fig. 1 (b-c), we can observe that
although the processing sequence is the same, the completion time is
different due to the influence of machine configuration in heterogeneous
factories. The completion time difference between the two processing
factories is 8. We can see that the configuration of heterogeneous fac-
tories has a significant impact on the completion time.

4. CIG algorithm for DHHFSP with blocking constraints

In this section, we first describe the proposed CIG algorithm frame-
work (see in Algorithm 1). CIG consists of the initialization, the neigh-
borhood search strategies, the destruction-reconstruction, and the local
intensification strategy. First, based on the characteristics of multiple
factories, the Nawaz-Enscore-Ham with ascending order (NEH_F_asc)
and descending order (NEH_F_des) initialization methods are utilized,
respectively, to allocate the jobs to factories. Then, the cross-factory and
inner-factory neighborhood search strategies are proposed to explore the
globally better solutions. Next, the destruction-reconstruction method is
adopted to improve the ordering of jobs. Finally, the local intensification
strategy is presented to increase the quality of the solution further. The
collaboration process between cross-factory and inner-factory is shown
in Fig. 2.

Algorithm 1 The framework of the CIG algorithm

Input:π = (1, 2, 3..., n), parameter d
Output:πbest and makespan
Begin:

π = NEH F asc(πorigin),π′

= NEH F des(πorigin)

While the termination criterion is not satisfied do
π1←Random critical factory swap(π)

π2←Random discretionary factory swap(π′

)
% Cross-factory neighborhood search

For f = 1 to F % Inner-factory neighborhood search
π1′

←Destruction Reconstruction(π1, d)
π2′

←Destruction Reconstruction(π2, d)

(continued on next page)

Fig. 2. collaboration process between cross-factory and inner-factory.

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

5

(continued)

Algorithm 1 The framework of the CIG algorithm

π1′ ′ ←Local Intensification (π1′

)

π2′ ′ ←Local Intensification (π2′

)

If f(π2′ ′

) < f(π1′ ′

) then
π = π1′

= π2′ ′

Else
π = π2′

= π1′ ′

End
End
If f(π) < f(πbest) then

πbest = π
makespan = f(πbest)

End
End
End

Notably, the key issues of the DHHFSP are how to allocate jobs to
appropriate factories and how to generate the scheduling sequence of
operations on machines with minimal makespan. Due to the above two
issues being coupled, it is necessary to establish a collaboration between
cross-factory and inner-factory. The above motivate us to implement a
collaborative strategy. First, the different neighborhood search strate-
gies based on different factories are executed, which changes or opti-
mizes the allocating jobs to appropriate factories. Then, based on the
above allocation, the destruction-reconstruction and local intensifica-
tion strategies are performed to improve the quality of solution for each
factory. Next, the current best solution obtained by an acceptance cri-
terion is used to update or influence the neighborhood solution and
continue to participate in the next cycle.

4.1. Encoding and decoding

A good encoding–decoding method can help us obtain a reasonable
and effective scheduling sequence, especially for the complex combi-
natorial optimization problem. In DHHFSP with blocking constraints,
the scheduling sequence and the machine selection should be deter-
mined in each factory. The solution is denoted asπ = {π1; π2; ...; πF} =
{

π1
1, π1

2, ..., π1
sum1; π2

sum1+1,…, π2
sum2; ...; πF

sumF− 1, ..., πF
sumF

}
, πf represents

the job sequence which is allocated to factory f, πf
j represents the j-th job

processing in factory f, f = 1, 2, …, F. sumf represents the sum of all jobs
in the first f factories. Each job must be allocated to only one factory to
process. As can be seen from Fig. 1 (a), sequence π is{π1; π2}.π1 =

{π1
1, π1

2, π1
3} = {1,2,4},π2 = {π2

4, π2
5, π2

6} = {3,5,6}, that is jobs 1, 2, and
4 are processed sequentially in factory 1, the jobs 3, 5, and 6 are pro-
cessed in factory 2.

For each factory, the processing of decoding adopts the first-
input–output rule to determine the sequence according to the comple-
ment time of the jobs, and the first available machine rule to assign
machine to the job (see in Fig. 1). The details refer to (Qin et al., 2021a;
Pan et al., 2014).

4.2. The initialization methods

The existence of blocking constraints affects the completion time of
the job sequence. For the CIG algorithm, the quality of the initial solu-
tion directly influences the makespan of the job sequence. The NEH_F
method has been proved to be an effective initialization strategy when
solving the DPFSP based on NEH (Huang et al., 2020). Based on the
research, this paper designs an initial method with ascending order of
processing time, named NEH_F_asc to complete the initialization of the
solution. To improve the diversity and the convergence of the solution,
NEH_F_des and NEH_F_asc are simultaneously chosen to generate the two
initialization solutions. Here, the only difference between NEH_F_des and
NEH_F_asc is that the initial solution π is generated by sorting jobs

according to their descreasing total processing time. In NEH_F_asc, we
firstly arrange the job sequence in ascending order. Secondly, extract the
same number of jobs as the number of factories, and then place these
jobs into each factory one by one in order to ensure that each factory can
have one job in it. For the rest jobs of the sequence π, (1) we take out the
first job and try to insert it in all positions of all factories, and the po-
sition with the minimal makespan is selected. (2) the above first job is
deleted from π. (3) Repeated the above steps (1) and (2), until all the jobs
are assigned into factory. At this time, we can guarantee the makespan of
each factory is small as much as possible, but not guarantee the number
of jobs in all factories is the same or average. The pseudocode of
NEH_F_asc is shown in Algorithm 2.

Algorithm 2 NEH_F_asc initialization method

Input:π origin = (1, 2,3...n)
Output:π
Begin:

π = SortAscending(
∑S

s=1pj,s), j = 1,2…n
For f = 1 to F

π f = πf % Assign the f th job to factory f one by one.
End
For j = F + 1 to n

For f = 1 to F

πf temp ←
insert ith posistion

i=1 to |πf |
extract(πj)

π f = argmin|π
f |

i=1 f(π f temp)

End
End

End

4.3. The neighborhood search strategy

Generally speaking, the IG algorithm iterates a solution continu-
ously, which will improve its local search ability, but its performance in
global search ability is not outstanding. The time complexity of the
swap-based strategy is less than that of insert-based strategy (O (n2) vs.
O(n3)). For example, we perform the swap operations on n jobs. Each job
exchanges positions with all other jobs, so there are total n-1 exchanges.
The total time complexity is O(n2). When we execute the insertion op-
erations on n jobs. Every job first selects the positions, there are n-1
positions to be selected. Once a position p is selected, there are n-p jobs
should be moved. If all the n jobs should execute the insertion operation,
the total time complexity is O(n3), which is larger than the time
complexity of swap operation.

Thus, in the proposed algorithm, the neighborhood search strategy
based on swap is proposed for the two solutions to enhance the global
search ability of the IG algorithm, improve the efficiency of the job
sequencing and reduce the makespan caused by blocking constraints. In
addition, for the distributed heterogeneous characteristic of DHHFSP,
there are two kinds of factories, i.e., critical and non-critical factories. It
is a lack of the neighborhood disturbing strategies of assigning jobs to
the two kinds of factories. Thus, in our neighborhood search, random-
critical factory disturbing and random-discretionary factory disturbing are
considered.

1) Random-critical factory disturbing: (a) The sequence in factory f with
the maximum completion time (fmax) is selected, then a random
factory (frandom) is selected. (b) Randomly select a job from each of
the two factories and swap them. (c) If the makespan of the new
sequence obtained is less than the original sequence, the new one
replaces the old one. (d) Repeat the steps (a-c) until the termination
criterion is met.

2) Random-discretionary factory disturbing: (a) Two job sequences are
randomly selected from different factories, respectively. (b)
Randomly select a job from each of the selected factories and swap
them. (c) If the makespan of new sequence is less than the original

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

6

sequence, it becomes the new sequence. (d) Go to step (a) until the
termination criterion is satisfied.

The framework of the neighborhood search strategy is given in Al-
gorithm 3.

Algorithm 3 The neighborhood search strategy

Input:π,π′

Output:π1,π2

Begin:
πtemp1 = π,πtemp2 = π′

πtemp1: Random-critical factory disturbing:
fmax = argminF

f=1f(πtemp1)% Find the factory with the maximum makespan
do {

frandonm = rand()%F
} While (frandonm = = fmax)
For j = 1 to n2

pos1 = rand()%|πtemp1 fmax |,pos2 = rand()%|πtemp1 frandom |

πtemp1 new = swap(πtemp1
pos1 , πtemp1

pos2)

If f(πtemp1 new) < f(πtemp1) then
πtemp1 = πtemp1 new

Else
πtemp1 new = πtemp1

End
End
If f(πtemp1) < f(π) then

π = πtemp1

End
πtemp2: Random-discretionary factory disturbing:

frandonm1 = rand()%F
do {

frandonm2 = rand()%F
} While (frandonm1 = = frandonm2)

For j = 1 to n2

pos3 = rand()%|πtemp2 frandom1 |,pos4 = rand()%|πtemp2 frandom2 |

πtemp2 new = swap(πtemp2
pos3 , πtemp2

pos4)

If f(πtemp2 new) < f(πtemp2) then
πtemp2 = πtemp2 new

Else
πtemp2 new = πtemp2

End
End
If f(πtemp2) < f(π2) then

π2 = πtemp2

End
End

4.4. The destruction and reconstruction strategy

In the traditional IG algorithm, the destruction and reconstruction
strategy can effectively explore local neighborhoods more in-depth. This
operation has a direct impact on finding a better scheduling sequence.
To enhance the local search ability of the proposed algorithm, we
introduce the destruction and reconstruction strategy to reduce the
makespan caused by the blocking constraints. The steps are as follows
(see in Algorithm 4): (1) In a factory, we randomly extract d jobs from
the current job sequence. (2) Insert the first extracted job into all posi-
tions of the remaining job sequence. (3) The minimum makespan of the
sequence is selected to be the current remaining sequence. (4) Repeat
the steps (2–3) until the d jobs are all inserted into the job sequence.

The details of the destruction and reconstruction strategy are shown
in Algorithm 4.

Algorithm 4 The destruction and reconstruction strategy

Input:π 1, π 2, parameter d
Output:π 1′

, π 2′

Begin:
For f = 1 to F

π temp1 f = π 1 f %π 1 f : The job sequence of factory f
Ud

i=1 = extract(π temp1 f)

For j = 1 to d

(continued on next column)

(continued)

Algorithm 4 The destruction and reconstruction strategy

π temp1 f ′ = π temp1 f\Uj,π temp1 f ′

←
insert ith posistion

i=1 to |π temp1 f |
Uj

π temp1 f = argmin|π
temp1 f |

i=1 f(π temp1 f ′

)

End
If f(πtemp1 f) < f(π1 f) then

π 1 ′ f = π temp1 f

End
End

π2 performs the same process as π1

End

4.5. The local intensification strategy

The blocking constraints prolong the completion time of the job
sequence, which reduces the production efficiency of the enterprise. To
further improve the algorithm’s performance and reduce the blocking
time, we develop a local intensification strategy based on swap to solve
the DHHFSP with blocking constraints. The local intensification strategy
contains two kinds of swap operators: random swap and sequential
swap. Based on the sequence π1′

and π2′

obtained from the destruction
and reconstruction strategy.

The details of the proposed strategy are given as follows:

1) Random swap: (a) Randomly select two different jobs in the same
sequence. (b) Swap the positions of the two jobs. (c) If the completion
time of the sequence is reduced, the new sequence replaces the old
sequence. (d) Repeat steps (a-c) until the termination criterion is
met.

2) Sequential swap: Set i = 1, j = 1. (a) Select the ith job in the sequence.
(b) Select the jth job in the same sequence. (c) Swap the ith job and
the jth job. If the job sequence is improved, it replaces the original
sequence. (d) j++, repeat the step (c), until j == n. (e) i++, skip to
step (b), until i == n.

To make it easier for readers to understand, we give the pseudo-code
of the strategy. The process is shown in Algorithm 5.

Algorithm 5 The local intensification strategy

Input:π1′

,π2′

Output:π1′ ′

,π2′ ′

Begin:
r = rand()%2
Caser = = 0:
Random swap:
For f = 1 to F

For j = 1 to n2

πtemp1 f = π1′ f %π1′ f : The job sequence of factory f
For j = 1 to n2

p1 = rand()%|πtemp1 f |

do {
p2 = rand()%|πtemp1 f |

} While (p1 = = p2)
Swap(πtemp1 f

p1 , πtemp1 f
p2)

If f(πtemp1 f) < f(π1′ f) then
π1′ ′ f = πtemp1 f

End
End
End

End
Caser = = 1:
Sequential swap:
For f = 1 to F
For i = 1 to |πtemp1 f |

πtemp1 f = π1′ f

For j = 1 to |πtemp1 f |

Swap(πtemp1 f
i , πtemp1 f

j)

(continued on next page)

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

7

(continued)

Algorithm 5 The local intensification strategy

If f(πtemp1 f) < f(π1′ f) then
π1′ ′ f = πtemp1 f

End
End
End
End
π2′

performs the same process as π1′

End

4.6. The time complexity of CIG

Assume that there are n jobs, f factories. The numbers of jobs and the
stages in each factory are n/f and s, respectively. The computational
complexity of the whole CGI algorithm mainly consists of initialization,
neighborhood search, destruction & reconstruction, and local intensifi-
cation strategies. The time complexity of the initialization strategy is O
(n*f*s*n/f) that approaches O(n2s). In while loop, we assume that the
number of iterations of neighborhood search strategy is w1, the time
complexity of this strategy is O(w1n2). The time complexities of the
destruction and reconstruction strategy and the local intensification strategy
are O(w2*d*f*s*n/f) and O(w3(n4 + s n3/f2)), respectively, where w2 and
w3 are the numbers of iterations of destruction and reconstruction and
local intensification strategy, respectively. Thus, for the whole CGI algo-
rithm, the time complexity of the CIG is O(n(s n + w1 n + w2ds + w3(n4 +

s n2/f2)) that approaches O(n5). In addition, in the proposed CIG, we
propose the new strategies based on swap to replace the greedy inser-
tion. Compared with other IG algorithms, these strategies reduce the
time complexity. Thus, CIG can execute more times under the same
termination condition. Compared with other swarm intelligent com-
parison algorithms, the number of solutions of this algorithm is far less
than that of these comparison algorithms. Therefore, in the whole iter-
ative process, we only need to iterate the two solutions at a deeper level,
rather than focusing on many solutions.

5. Simulation experiments and analysis

The experimental simulation environment of all algorithms is a PC
with 2.60 GHZ Intel Core i7 Pentium processor with16 GB RAM. The
algorithms are coded by Visual Studio 2019C++ in Microsoft Windows
10 operating system. Referring to the literature (Zhang et al., 2017), this
paper adopts the same elapsed CPU running time as the termination
criterion of all comparison algorithms.

5.1. Test data

To more systematically verify the performance of all algorithms, we
give comprehensive data. The number of job set is n∈{100, 200, 300,
400, 500}, the factory set is f∈{2, 3, 4, 5}, the stage set is S∈{5, 8, 10}.
The number of jobs, factories, and stages constitute the instance scalen×
f × s. Therefore, the benchmark set consists of 60 different scale in-
stances. We refer to the literature (Huang et al., 2020; Taillard, 1993) to
set the values of the termination criterion, noted as theTimeLimit = ω×

n× f × S, ω is a parameter that controls the length of running time, in
this paper, we set the value of ω as 5 and 10 to control the length of
running time. The processing time of the jobs is generated randomly
within the range [1, 99] (Qin et al., 2021b). These experimental settings
are general in the flow shop scheduling research, the source code and
test data in this paper can be found in https://github.com/wangyut
ing9836/DBHFSP. In addition, the number of processing machines is
randomly generated from the range [1, 5]. We utilize the relative

percentage increase (RPI) to estimate the difference between the current
value obtained and the best value. The RPI is calculated as follows:

RPI = (ci − cbest)/cbest × 100 (12)

where RPI is the relative percentage increase, ci is the average value
of makespan of a instance obtained by an algorithm independently
performed several times, and the cbest is the minimum value of a instance
obtained by all the compared algorithms independently performed
several times. We first calculate RPI of each instance, and then compute
the average values of RPI for all the instances. It is notable that the range
of RPI value obtained by the different scale, respectively, has a little
difference according to the simulation experimental results. Thus, in the
following tables, the “mean” values that is the average values of RPI of
all the instances, can be calculated to test the overall performance for
different factory configurations.

5.2. Verification of the MILP model

In this section, we validate the proposed MILP and test the perfor-
mance of the MILP and CIG algorithm, respectively, on 12 small-scale
instances. The MILP of DHHFSP with blocking constraints is coded in
the CPLEX 12.6 software, and the maximal termination criterion is set
1000 s. If the optimal solution can be found within 1000 s, it will be
terminated. For the CIG algorithm, the termination time is set
toTimeLimit = 10× n× f × S. In addition, the CIG algorithm indepen-
dently performed 20 times for each instance. Table 2 gives the RPI,
makespan, and time obtained by the MILP and CIG algorithm. Among
them, the makespan of CIG algorithm is the average value of 20
experimental results.

As can be seen from Table 2, MILP gets the best RPI and makespan
values for the first seven instances and the first nine instances,

Table 2
RPI and Makespan values for the MILP Model and CIG algorithm.

MILP CIG
F_n_S RPI makespan Time(s) RPI makespan Time(s)

2_8_2 0.00 201 0.66 4.98 211 0.32
2_8_3 0.00 263 0.73 1.90 268 0.48
2_8_4 0.00 304 0.72 2.63 312 0.64
2_12_2 0.00 316 1000 0.00 316 0.48
2_12_3 0.00 385 29.04 0.31 386.2 0.72
2_12_4 0.00 419 126.16 0.72 422 0.96
2_16_2 0.00 439 1000 0.06 439.25 0.64
2_16_3 0.63 478 1000 1.23 480.85 0.96
2_16_4 0.57 530 1000 0.99 532.2 1.28
2_20_2 0.00 528 1000 0.00 528 0.8
2_20_3 1.20 592 1000 0.24 586.4 1.2
2_20_4 4.38 644 1000 0.52 620.2 1.6

Table 3
ARPI values in terms of different factories and jobs (minimum APRI values are in
bold).

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

f = 2 0.25 0.68 0.27 0.41 0.31 0.33
f = 3 0.62 3.46 0.67 1.14 0.69 0.8
f = 4 2.63 2.8 2.03 2.61 0.91 1.23
f = 5 3.28 6.22 1.34 4.25 1.31 1.64
Mean 1.7 3.29 1.08 2.1 0.81 1
n = 100 0.86 1.34 0.92 0.85 0.73 0.66
n = 200 1.24 3.27 1.07 1.33 1.04 1.9
n = 300 0.71 2.87 0.25 2.56 0.34 0.5
n = 400 4.88 2.99 1.48 3.65 1 0.97
n = 500 0.59 4.83 1.5 1.45 0.93 0.91
Mean 1.66 3.06 1.04 1.97 0.81 0.99

H.-X. Qin et al.

https://github.com/wangyuting9836/DBHFSP
https://github.com/wangyuting9836/DBHFSP

Expert Systems With Applications 201 (2022) 117256

8

respectively. However, as the problem size increases, i.e., 2_20_3 and
2_20_4, the superiority of CIG algorithm over CPLEX increases with
respect to RPI, makespan and run time. From Table 2, we can conclude
that it is difficult to obtain a good solution in a short time for the large-
scale instances of MILP. Thus, the proposed CIG algorithm is effective to
solve the DHHFSP with blocking constraints.

5.3. The parameter test of the CIG algorithm

Although the CIG algorithm has few parameters, the parameter
d (the number of destroyed jobs) is critical, which directly affects the
algorithm’s performance. Thus, in this subsection, we select a different
number of destruction jobs, d = {2, 3, 4, 5, 6, 7}, to test the effect of
parameter value on results. Further, we classify to test the influence
from multiple angles, i.e., the scale of the factory f = {2, 3, 4, 5}and the
scale of the job n = {100, 200, 300, 400, 500}, S = {5, 8, 10}, thus, there
are 5 × 4 × 3 = 60 differernt type combinations. For these 60 instances,
we give the Average RPI (ARPI) value classified by the number of fac-
tories and the number of jobs to detect the effect of d parameter from
different angles..

From Table 3, we can see that when the value of parameter d is equal
to 6, the minimum mean value is obtained when considering different
factories and different jobs. The results listed in Table 3 show that the
different values of parameter d have a large sensitivity, and the variation
trend of the influence on the proposed algorithm is consistent in terms of
different factories and jobs. In fact, with the increase of d value, more
and more jobs are destroyed and inserted into various positions to
improve the quality of the job sequence. However, when the value of d is
greater than 6, its mean value decreases. It shows that setting d at a large
value will take a long time to explore all jobs, and lose opportunities to
generate promising solutions by a number of iterations, which will result
in reducing the performance of the algorithm. In order to more clearly
see the differences of different d values in all scale instances, we draw a
box diagram for all results. The results are shown in Fig. 3. As can be

seen, when d = 6, the position of the median line in its rectangle is the
lowest, and by analysing the values in Table 3. Through the experi-
mental tests of the parameter d, we choose d = 6 as the parameter value
used in the proposed algorithm.

5.4. Comparison of different initialization strategies

To further investigate the performance of the proposed initialization
strategies, we list the results obtained by the different initialization
strategies in terms of the ARPI values. To further investigate the per-
formance of the proposed initialization strategies, we list the results
obtained by the different initialization strategies in terms of the ARPI
values for 60 test instances. As can be seen from Table 4, CIG_des_asc
indicates that the CIG used the NEH_F_asc and NEH_F_des strategies to
generate two initial solutions, respectively. CIG_des_des utilizes the
NEH_F_des and NEH_F_des strategies to generate two initial solutions.

Fig. 3. Box plot for different d values.

Table 4
The ARPI values for comparison with different initialization strategies.

ARPI CIG_des_asc CIG_des_des CIG_asc_asc

f = 2 0.244 0.410 0.134
f = 3 0.299 0.882 1.058
f = 4 0.532 1.270 0.854
f = 5 2.331 3.103 1.492
Mean 0.851 1.416 0.884

Fig. 4. Box plot for different initialization strategies.

Table 5
The ARPI values for comparison with and without neighborhood and intensifi-
cation strategies.

ARPI CIG CIG_N_NSS CIG_N_LIS

f = 2 0.244 1.581 3.221
f = 3 0.299 0.675 9.823
f = 4 0.532 2.534 12.574
f = 5 2.331 0.533 7.531
Mean 0.851 1.331 8.287

Fig. 5. Box plot with and without different strategies.

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

9

Fig. 6. Means plots and 95% LSD confidence intervals for all compared algorithms.

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

10

CIG_asc_asc employed the NEH_F_asc and NEH_F_asc strategies to
generate the initial solutions. From the results of Table 4, the CIG_de-
s_asc is superior to other algorithms. This shows that the performance of
the proposed initialization strategy combined with NEH_F_des strategy is
superior to other algorithms. The jobs with short and long processing
time are selected to form a scheduling sequence, respectively, which can
effectively reduce the impact of blocking constraints on completion
time. Moreover, the proposed NEH_F_asc strategy not only improves the
quality of the initial solution, but also improves the efficiency for the
subsequent iteration. We also made a statistical test on the RPI values
obtained from the 60 instances. As shown in Fig. 4, the box plot shows
different levels of initialization strategies performance. Among them,
the initialization strategy with NEH_F_asc strategy is effective. Consid-
ering the mean values obtained in Table 4 and Fig. 4, we finally choose
the CIG_des_asc as the initialization strategy.

5.5. Performances of neighborhood search and local intensification
strategies

The test of the CIG_N_NSS and CIG_N_LIS is based on the NEH_F_asc
combined with the NEH_F_des strategies to execute. CIG_N_NSS is the CIG
without the proposed neighborhood search strategy. CIG_N_LIS is the
CIG without the local intensification strategy. From the experimental
results, in each factory (as shown in Table 5 and Fig. 5), in terms of the
ARPI value and range of box interval, the CIG with the above two
strategies obtained the minimum mean value. In addition, Fig. 5 shows
that the significance level of CIG algorithm is the best. The reason may
be that the neighborhood search strategy improves the algorithm’s
global search ability and the local intensification strategy enhances the
local exploitation ability. Without this strategy, the quality of the al-
gorithm will decline sharply. It is possible that the proposed strategy
makes a more in-depth exploration in sequence sorting, and many un-
known neighborhoods are found, which improve the diversity of solu-
tions. Thus, the blocking constraints of the job sequence are effectively
reduced by the proposed strategies.

5.6. Performance comparison of all the compared algorithms

To comprehensively and intuitively evaluate the performance of the
CIG algorithm, we compare the CIG against the state-of-the-art

metaheuristics for related problems, the DDE algorithm (Zhang et al.,
2018), the evolutionary algorithm (EA) (Fernandez-Viagas et al., 2018),
the modeling and multi-neighborhood iterated greedy algorithm
(MN_IG) (Shao et al., 2020), the IG algorithm (Ruiz et al., 2019), and the
DPSO algorithm (Marichelvam et al., 2019). For the DHHFSP problem,
there are two key issues to be solved. One is how to allocate jobs to
appropriate factories and the other is how to generate the scheduling
sequence of operations on machines with minimal makespan. DPSO has
not been developed for HFSP without distributed environment. How-
ever, DPSO can deal with the second issue of DHHFSP. Thus, for the sake
of fairness, DPSO adopts the same allocation strategy as the CIG algo-
rithm to solve the first issue of DHHFSP. Specifically, DPSO first adopts
the allocation strategy based on NEH_ F_ des and NEH_ F_ asc considered
in this paper to initialize the population. Then, for each factory, the
implementation strategy is employed according to the original litera-
ture. Thus, it is reasonable when DPSO can achieve the good perfor-
mance. The reason may be that the evolutionary strategies are effective
when optimizing the solutions of each factory.

Besides the DPSO algorithm, all the compared algorithms, i.e., DDE,
EA, IG, and MN_IG, are developed for the distributed scheduling prob-
lems. For MN_IG, it used the NEH_F_asc initialization strategy to allocate
the jobs to different factories. After allocating the factories, the sequence
in each factory is adjusted according to the strategy proposed in the
original literature. For EA, DDE, IG, they allocate jobs to factories ac-
cording to the strategy of the original paper. In the code, we separate the
problem from the algorithm. When the factory problem is finished, the
subsequent operations of each algorithm and the problem will not
interfere with each other. Thus, it is reasonable to select the above
compared algorithms.

To better show the performance of all the algorithms, we set the
parameters used in the compared algorithms to the same value as in the
original literature. To make fair comparisons, we run all the compared
algorithms under the same environment and adopt the same maximal
elapsed CPU time, Timelimit, as the termination criterion. In addition,
the Means and 95% Least Significant Difference (LSD) confidence in-
tervals (verify whether there is a significant difference between the two
values) for all test algorithms are illustrated in Fig. 6.

Tables 6 and 7 show the RPI values and best target values of all al-
gorithms, in which the minimum values of the results are marked in
bold. We can find that the number of the minimum best values produced

Fig. 6. (continued).

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

11

by the CIG algorithm are 58 out of 60 test instances in Table 6 and 56 out
of 60 test instances in Table 7. The DDE, EA, MN_IG, IG, and DPSO al-
gorithms can get 0, 1, 1, 1, 0 best values, respectively, and the number of
all these algorithms is significantly less than that of the CIG algorithm.
For RPI values, the CIG algorithm obtains the maximum number of the
best results, followed by IG, EA, DPSO, MN_IG and DDE algorithms.
About the mean value of instances in each factory, the proposed

algorithm can get 6/6 minimum best values and 6/6 minimum best RPI
values in Tables 6 and 7. EA, DDE, MN_IG, and IG algorithms obtain 0/6
minimum best values and 0/6 minimum best RPI values, respectively.
From the overall performance shown in Tables 6 and 7, the proposed
CIG algorithm is better than other comparison algorithms. This indicates
that the proposed strategies are effective in solving DHHFSP with
blocking constraints.

Table 6
Experimental results of the best and RPI values for all test algorithms whenω = 5.

f n × s CIG DDE(2018) EA(2018) IG(2019) DPSO(2019) MN_IG(2020)

best RPI best RPI best RPI best RPI best RPI best RPI

100 × 5 2759 0.32 2928 6.13 2791 2.02 2814 3.42 2772 1.82 2932 6.27
100 × 8 2682 1.15 3348 24.83 3050 15.72 3035 15.53 3030 15.27 3383 26.14
100 × 10 2858 1.6 3329 16.48 3101 9.41 3104 10.52 3081 9.83 2996 4.83
200 × 5 5113 0.22 5176 1.23 5138 0.9 5119 0.33 5128 0.73 5235 2.39
200 × 8 5778 0.26 6166 6.8 5870 2.51 6079 5.66 5806 1.16 5855 1.33
200 × 10 4970 0.34 5280 8.59 5107 3.88 5261 6.81 5024 2.12 5037 1.35
300 × 5 4402 2.52 5199 18.11 5078 15.88 4999 14.56 5062 16.76 5341 21.33

f = 2 300 × 8 7538 0.35 7764 4.7 7603 1.7 7840 4.03 7562 0.62 7694 2.07
300 × 10 7732 1.02 8571 10.85 8158 6.52 8119 5.92 8066 5.26 8513 10.1
400 × 5 10,152 0.32 10,329 2.21 10,203 0.94 10,318 1.91 10,168 0.34 10,152 0
400 × 8 9871 0.83 10,351 4.86 10,296 4.99 10,153 3.37 10,121 3.21 10,739 8.79
400 × 10 10,788 1.85 13,564 25.73 13,164 23.78 12,842 20.14 12,561 17.98 13,211 22.46
500 × 5 6335 1.17 7035 11.05 6963 10.29 6866 8.96 7018 11.02 7234 14.19
500 × 8 6832 3.26 8112 18.74 8040 18.07 7930 17.41 8087 18.7 8441 23.55
500 × 10 7539 4 9098 20.68 8988 19.73 8731 16.61 8869 19.19 9308 23.46
mean 6356.6 1.28 7083.33 12.07 6903.33 9.09 6880.67 9.01 6823.67 8.27 7071.4 11.22
100 × 5 1801 2.79 2039 13.21 1900 7.77 2065 17.04 1874 6.22 1974 9.61
100 × 8 1828 1.79 2210 20.9 1938 7.54 1976 10.67 1882 4.57 2080 13.79
100 × 10 2394 3.3 2924 22.14 2745 16.45 2739 17.21 2728 16.57 2945 23.02
200 × 5 1917 4.1 2273 18.57 2158 14.31 2109 11.86 2151 13.57 2243 17.01
200 × 8 3701 5.53 4521 22.16 4307 18.15 4207 15.44 4216 16.05 4712 27.32
200 × 10 4276 4.28 5256 22.92 5091 20.26 5016 18.59 4949 17.27 5231 22.33
300 × 5 5766 17.6 7118 23.45 6984 21.69 6731 18.29 6865 20.34 7224 25.29

f = 3 300 × 8 5460 2.96 5782 5.9 5555 2.57 5608 3.17 5519 2 5693 4.27
300 × 10 5754 15.63 6742 17.17 6724 17.63 6536 15.35 6533 15.17 7140 24.09
400 × 5 7353 17.4 8721 18.6 8745 19.33 8391 15.74 8658 18.43 9174 24.77
400 × 8 6899 3.28 7046 2.13 6999 1.81 6952 1.27 6981 1.79 7205 4.44
400 × 10 7182 2.93 7532 6.38 7119 1.19 7357 4.48 7125 0.67 7382 3.69
500 × 5 8689 2.43 9010 3.69 8848 2.48 8777 1.92 8749 1.46 9040 4.04
500 × 8 8500 3.23 9096 7.01 8836 4.63 8719 3.71 8763 3.82 9085 6.88
500 × 10 8988 5.77 9438 5.01 9345 4.28 9308 4.4 9223 3.4 9580 6.59
mean 5367.2 6.2 5980.53 13.95 5819.6 10.67 5766.07 10.61 5747.73 9.42 6047.2 14.47
100 × 5 1290 2.48 1444 11.94 1336 6.99 1380 8.06 1322 4.37 1380 6.98
100 × 8 1550 2 1849 19.29 1649 7.88 1618 7.04 1603 5.26 1709 10.26
100 × 10 1714 4.8 2021 17.91 1891 11.86 1824 8.81 1900 13.45 2077 21.18
200 × 5 1419 9.51 1668 17.55 1620 15.27 1591 13.5 1650 18.33 1669 17.62
200 × 8 1484 8.28 1835 23.65 1660 13.73 1631 11.73 1659 13.35 1729 16.51
200 × 10 2800 4.08 2968 6 2884 4.22 2847 2.62 2858 3.03 3013 7.61
300 × 5 4104 3.58 4075 0.3 4074 0.29 4063 0.35 4107 1.08 4230 4.11

f = 4 300 × 8 3980 5.36 4204 5.63 4136 4.82 4084 3.26 4097 4.92 4379 10.03
300 × 10 4324 3.61 4521 4.8 4332 1.85 4314 0.61 4330 1.33 4465 3.5
400 × 5 5095 2.17 5189 1.84 5165 1.69 5133 1.09 5161 1.59 5191 1.88
400 × 8 5774 12.23 6990 21.06 6782 18.7 6656 17 6765 18.95 7255 25.65
400 × 10 5220 5.07 5657 8.37 5541 7.04 5468 5.68 5498 6.12 5778 10.69
500 × 5 6342 1.92 6386 0.69 6372 0.56 6382 0.83 6386 0.99 6479 2.16
500 × 8 2816 9.38 3365 19.5 3307 18.01 3243 15.83 3296 17.87 3283 16.58
500 × 10 6508 0.67 6915 6.25 6634 2.38 6842 5.21 6557 1.29 6561 0.81
mean 3628 5.01 3939.13 10.99 3825.53 7.69 3805.07 6.77 3812.6 7.46 3946.53 10.37
100 × 5 1173 2.63 1359 15.86 1228 7.74 1232 9.68 1208 4.61 1282 9.29
100 × 8 1244 1.7 1521 22.27 1308 8.43 1399 14.85 1286 4.97 1338 7.56
100 × 10 1400 3.93 1646 17.57 1565 13.11 1458 7.69 1562 13.6 1714 22.43
200 × 5 2418 15.16 2784 15.14 2715 13.25 2705 14.76 2794 15.55 2984 23.41
200 × 8 1406 12.94 1525 8.46 1516 8.39 1448 5.34 1525 8.46 1655 17.71
200 × 10 1343 16.76 1619 20.55 1566 18.59 1472 10.77 1539 16.76 1617 20.4
300 × 5 1668 8.35 1911 14.57 1857 12.84 1823 10.39 1847 12.07 1908 14.39

f = 5 300 × 8 3355 5.39 3671 9.42 3552 6.61 3547 7.4 3569 7.28 3746 11.65
300 × 10 3185 3.1 3538 11.08 3337 5.91 3378 6.88 3288 4.53 3384 6.25
400 × 5 2049 7.73 2403 17.28 2338 15 2305 13.28 2360 16.15 2345 14.45
400 × 8 4506 4.77 4555 1.09 4541 1.02 4512 0.91 4622 2.57 4937 9.57
400 × 10 5078 15.76 6047 19.08 5808 15.09 5676 12.79 5945 18.26 6129 20.7
500 × 5 5023 0.58 5258 4.68 5072 1.52 5212 4.06 5042 0.86 5078 1.09
500 × 8 5767 20.53 7068 22.56 6969 21.72 6932 21 7193 26.68 7345 27.36
500 × 10 5927 12.15 6737 13.67 6530 11.66 6443 10.41 6738 14.66 6939 17.07
mean 3036.13 8.77 3442.8 14.22 3326.8 10.72 3302.8 10.01 3367.87 11.13 3493.4 14.89

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

12

To further evaluate the performance of the proposed algorithm, a
multifactor ANOVA analysis is utilized to illustrate whether the results
obtained by CIG are indeed different from the compared algorithms. The
type of the algorithms and jobs, factories, and stages are considered as
the factors. Fig. 6 shows that the Means plots and 95% least-significant
difference (LSD) confidence intervals for all compared algorithms
whenω = 5. Fig. 6(a) illustrates the means plots of the algorithms. Fig. 6

(b) shows the interactions of the algorithms and the number of factories
(f). Fig. 6(c) gives the interactions of the algorithms and the number of
the stages and jobs (s and n). In addition, to further illustrate the dif-
ference among these algorithms, we randomly select six examples of
different scales to draw the box plots. The details are shown in Fig. 7 (a-
f).

To enrich the statistical results, we carried out the Friedman test on

Table 7
Experimental results of the best and RPI values for all test algorithms whenω = 10.

f n × s CIG DDE(2018) EA(2018) IG(2019) DPSO(2019) MN_IG(2020)

best RPI best RPI best RPI best RPI best RPI best RPI

100 × 5 2762 0.11 2928 6.01 2789 1.44 2806 3.15 2772 1.37 2932 6.15
100 × 8 2644 0.42 2838 7.34 2678 2.66 2690 3.82 2654 1.44 2752 4.08
100 × 10 2684 0.59 3062 16.83 2768 4.73 2841 8.98 2729 3.22 2819 5.03
200 × 5 1765 2.47 2033 15.18 1952 11.88 1968 12.86 1995 14.71 2163 22.55
200 × 8 2984 2.02 3553 19.07 3346 14 3352 13.84 3402 15.63 3665 22.82
200 × 10 5301 1.99 6821 28.67 6207 18.67 6250 20.62 6149 17.56 6476 22.17
300 × 5 7617 0.29 8148 6.97 7853 3.66 7851 4 7786 2.58 8076 6.03

f = 2 300 × 8 7607 0.7 8254 8.51 7911 4.76 7921 4.78 7767 2.94 8178 7.51
300 × 10 8124 1.06 8577 5.88 8289 2.79 8352 3.27 8184 1.43 8342 2.68
400 × 5 10,277 0.91 10,825 5.33 10,698 4.54 10,634 4.18 10,499 3.11 10,986 6.9
400 × 8 9959 0.72 10,125 1.67 10,011 1.01 10,004 1.06 9977 0.69 10,139 1.81
400 × 10 9975 1.16 10,178 2.04 10,106 1.61 10,060 1.27 10,027 0.86 10,176 2.02
500 × 5 12,498 0.48 13,156 5.26 12,872 3.51 12,813 3.41 12,663 1.8 13,045 4.38
500 × 8 12,995 2.48 16,323 25.61 15,906 22.91 15,465 20.28 15,296 18.8 16,846 29.63
500 × 10 13,391 2.26 16,515 23.33 16,350 22.91 15,870 19.5 15,588 18.06 17,011 27.03
mean 7372.2 1.18 8222.4 11.85 7982.4 8.07 7925.13 8.33 7832.53 6.95 8240.4 11.39
100 × 5 1746 1.38 1955 11.97 1792 3.66 1855 6.84 1760 1.96 1816 4.01
100 × 8 1834 2.07 2125 15.87 1933 7.6 1938 7.57 1956 8.26 2106 14.83
100 × 10 1977 1.75 2491 26 2201 13.36 2221 16.08 2212 14.33 2293 15.98
200 × 5 3043 1.23 3247 6.7 3118 3.22 3161 4.34 3066 1.99 3112 2.27
200 × 8 3888 3.41 4902 26.08 4607 20.36 4543 18.18 4601 20.32 4931 26.83
200 × 10 3880 3.71 4976 28.25 4434 15.9 4368 13.85 4399 15.09 4925 26.93
300 × 5 5419 1.72 5505 1.59 5460 1.27 5433 1.17 5484 1.56 5724 5.63

f = 3 300 × 8 5660 3.35 5967 5.42 5781 2.53 5741 2.18 5782 3.64 6164 8.9
300 × 10 5348 8.02 6219 16.29 6014 13.35 5878 11.47 6013 13.69 6303 17.86
400 × 5 6737 2.29 6862 1.86 6786 1.14 6796 1.25 6761 0.81 6844 1.59
400 × 8 7651 14.6 9523 24.47 9319 22.61 9027 18.8 9126 21.6 9603 25.51
400 × 10 4161 14.4 4915 18.12 4901 18.42 4841 17 4915 18.12 5287 27.06
500 × 5 8585 1.31 8590 0.25 8588 0.24 8569 0.25 8610 0.82 8652 0.97
500 × 8 8239 1.78 8436 2.39 8338 1.85 8347 1.57 8310 1.28 8459 2.67
500 × 10 8421 2.85 8692 3.22 8566 2.32 8555 2.13 8510 1.81 8745 3.85
mean 5105.93 4.26 5627 12.56 5455.87 8.52 5418.2 8.18 5433.67 8.35 5664.27 12.33
100 × 5 1352 3.49 1621 19.9 1431 8.26 1428 8.14 1441 8.89 1563 15.61
100 × 8 1585 2.51 1848 16.59 1656 6.96 1610 4.34 1675 7.88 1738 9.65
100 × 10 1834 2.29 2214 20.72 2044 13.3 1978 11.27 2032 13.28 2221 21.1
200 × 5 2521 1.82 2604 3.29 2562 2.39 2559 2.31 2531 1.45 2590 2.74
200 × 8 2884 9.88 3485 20.84 3305 16.61 3219 13.98 3331 16.83 3655 26.73
200 × 10 1684 6.36 2099 24.64 1930 15.91 1857 12.71 1939 16.46 2049 21.67
300 × 5 1985 6.12 2202 10.93 2134 8.47 2058 4.88 2143 9.31 2210 11.34

f = 4 300 × 8 2109 7.76 2475 17.35 2334 12.77 2342 12.08 2324 12.28 2420 14.75
300 × 10 4189 12.43 5190 23.9 4828 16.65 4721 14.39 4794 16.15 5277 25.97
400 × 5 2843 14.18 3425 20.47 3344 18.56 3199 13.55 3363 19.57 3352 17.9
400 × 8 5280 5.45 5612 6.29 5475 4.63 5451 3.93 5502 5.56 5610 6.25
400 × 10 5106 1.11 5507 7.85 5220 2.98 5353 5.6 5144 1.55 5251 2.84
500 × 5 6407 1.43 6660 3.95 6469 1.39 6653 4.01 6428 0.8 6536 2.01
500 × 8 6758 5.22 7002 3.61 6790 1.56 6758 0.88 6816 1.91 7061 4.48
500 × 10 7160 17.11 8385 17.11 8098 13.92 8165 15.57 8171 15.83 8651 20.82
mean 3579.8 6.48 4021.93 14.5 3841.33 9.63 3823.4 8.51 3842.27 9.85 4012.27 13.59
100 × 5 1013 3.95 1135 12.04 1059 7.49 1037 4.78 1045 4.92 1156 14.12
100 × 8 1395 4.7 1734 24.3 1524 11.6 1553 17.6 1524 11.57 1676 20.14
100 × 10 1230 4.59 1486 20.81 1348 12.15 1315 9.46 1324 10.53 1439 16.99
200 × 5 1177 7.37 1339 13.76 1294 11.02 1250 7.47 1299 11.95 1417 20.39
200 × 8 2409 6.47 2809 16.6 2581 8.66 2548 9.4 2583 10.03 2679 11.21
200 × 10 2339 3.85 2666 13.98 2437 6.02 2472 7.21 2401 4 2555 9.23
300 × 5 3492 5 3643 6.93 3423 1.58 3407 1.35 3456 2.77 3614 6.08

f = 5 300 × 8 3172 3.15 3518 10.98 3170 2.09 3386 9.85 3240 3.34 3264 2.97
300 × 10 3508 6.15 3838 9.41 3642 5.08 3565 2.61 3664 6.28 3751 6.93
400 × 5 4976 17.49 5655 13.65 5611 13.02 5579 13.3 5780 16.16 6122 23.03
400 × 8 4275 1.85 4571 7.02 4271 1.15 4494 7.15 4331 2.4 4387 2.72
400 × 10 4646 19.55 5528 18.98 5382 16.76 5208 14.46 5376 17.71 5737 23.48
500 × 5 5332 5.82 5484 2.85 5442 2.28 5444 3.22 5655 6.65 5786 8.51
500 × 8 2767 7.4 3115 12.58 2986 9.4 2951 7.42 3004 9.39 3103 12.14
500 × 10 5275 6.54 5541 5.04 5473 4.32 5399 3.21 5489 5.07 5762 9.23
mean 3133.73 6.93 3470.8 12.6 3309.53 7.51 3307.2 7.9 3344.73 8.18 3496.53 12.48

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

13

the experimental results. The Friedman test is a kind of non-parametric
test, and the first step is to assume that all algorithms are null hypoth-
eses. Judge whether the result rejects the hypothesis. If it rejects, it in-
dicates that the two algorithms have statistically significant differences;
otherwise, there is no significant difference between any algorithms.
The Friedman test is illustrated in Table 8. It contains the following el-
ements: the performance ranks (Ranks), the test number (N), the mean
value (Mean), the standard deviation (Std. Deviation), minimum and
maximum value (Min and Max).

From Fig. 6(a), it is clear that the proposed CIG algorithm is signif-
icantly different from all of the compared algorithms. The CIG is the

Fig. 7. The box plots of all compared algorithms.

Table 8
Experimental results of the Friedman test (α = 0.05).

Algorithms Ranks N Mean Std. Deviation Min Max

CIG 1.05 150 1.91 1.84 0.00 14.66
DDE 5.47 150 16.70 5.95 6.13 24.83
EA 3.13 150 9.31 4.70 1.16 18.38
MN_IG 4.64 150 12.77 7.66 4.83 26.14
IG 4.13 150 11.47 4.94 1.99 20.32
DPSO 2.58 150 8.17 5.27 0.47 18.42
p-value 0.00

H.-X. Qin et al.

Expert Systems With Applications 201 (2022) 117256

14

best; IG, DPSO, EA, DDE, and MN_IG follow sequentially. They all show
better performance in solving the DHHFSP with blocking constraints. In
Fig. 6(b), with the increase of the factories, the performance gap be-
tween the proposed algorithm and other algorithms is gradually nar-
rowing. However, there are still some regions that are significantly
different from the comparison algorithms. In terms of the stages and
jobs, as shown in Fig. 6(c), the proposed algorithm is significantly
different from other comparison algorithms. In the Friedman test, it can
be observed that it has the best performance for comparison with the
minimum ranks of 1.05. Moreover, compared to other algorithms, the
Std. Deviation, Mean, Min, and Max value of the CIG are all minimum.
The p-value calculated from the experimental results is 0.00. It shows the
significant differences among these algorithms. In addition, it also can
be seen from Fig. 7 (a-f) that makespan in the box plot of the CIG al-
gorithm is smaller than those by the DDE, EA, MN_IG, IG, and DPSO. In 6
randomly selected examples, the proposed algorithm shows significant
differences from other algorithms. On the whole view, the CIG algorithm
performs best.

The reason for the CIG algorithm’s superior performance can be
explained as follows: Firstly, the proposed NEH_F_asc strategy can
improve the product productivity by prioritizing the production of jobs
with short processing time. Blocking conditions for many small jobs are
effectively reduced. Secondly, the neighborhood search strategy can
quickly adjust the job sequence to search for a better solution and in-
crease the global search ability. Thirdly, the local intensification strat-
egy enhances the local search capability of the algorithm. The solution
of a single factory can be explored more deeply by this strategy.
Furthermore, the cross-factory and inner-factory search strategies can
maintain a balance between exploration and exploitation. After
completing one iteration, the quality of the solution will be further
improved. To sum up, according to the experimental results of all al-
gorithms, the proposed CIG algorithm is the most suitable to solve the
DHHFSP with blocking constraints for minimizing the makespan.

6. Conclusions

This paper presents an effective CIG algorithm to solve the DHHFSP
with blocking constraints for minimizing the makespan. To the best of
our knowledge, this is the first work that solves such a meaningful
problem. For solving this problem, a mathematical model of the
DHHFSP with blocking constraints is developed. Next, we design the
NEH_F_asc initialization strategy combined with the NEH_F_des to reduce
the impact of blocking as much as possible in the early stage of the al-
gorithm. Later, a neighborhood search strategy with two search opera-
tors is presented to improve the global search ability of the CIG
algorithm and quickly adjust the job sequence in different factories.
Moreover, the local intensification strategy based on the swap operation
is utilized to explore the neighborhood of the solution further and
improve the overall quality of the solution. However, the CIG algorithm
proposed in this paper does not consider the adjustment of the number
of jobs in the factory after the factory is allocated to the jobs. This is a
limitation of this algorithm. In later research, we will consider this factor
and continue to improve CIG algorithm.

In the future, many flow shop scheduling problems with heteroge-
neous factories and blocking constraints can be studied. Other con-
straints, such as the machine breakdowns, the setup time, the job
assembly, etc., can be considered. In addition, the multiobjective
DHHFSP is an interesting research topic. Furthermore, we would like to
improve the performance of the CIG algorithm. It may be a good choice
to introduce reinforcement learning or deep learning into the algorithm.
According to the real-world production needs, we may consider
applying the CIG algorithm to the real production shop scheduling
problem.

CRediT authorship contribution statement

Hao-Xiang Qin: Writing-origianl draft. Yu-Yan Han: Writing-
review & editing. Yi-Ping Liu: Supervision. Jun-Qing Li: Supervision.
Quan-Ke Pan: Supervision. Xue-Han: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was jointly supported by the National Natural Science
Foundation of China under grant numbers 61803192, 62173216,
62106073, 61973203, 61966012, We are grateful for Youth Innovation
Talent Introduction and Education Program support received from
Shandong province colleges, universities and Natural Science Founda-
tion of Hunan Province of China under grant number 2021JJ40116, and
the Fundamental Research Funds for the Central Universities(Grant NO.
HNU: 531118010537).

Reference

Bargaoui, H., Belkahla, D. O., & Ghédira, K. (2017). A novel chemical reaction
optimization for the distributed permutation flowshop scheduling problem with
makespan criterion. Computers & Industrial Engineering, 111, 239–250.

Cai, J.-C., Zhou, R., & Lei, D.-M. (2020). Dynamic shuffled frog-leaping algorithm for
distributed hybrid flow shop scheduling with multiprocessor tasks. Engineering
Applications of Artificial Intelligence, 90, 1–13.

Choi, H. S., Kim, J. S., & Lee, D. H. (2011). Real-time scheduling for reentrant hybrid
flow shops: A decision tree based mechanism and its application to a TFT-LCD line.
Expert Systems with Applications, 38, 3514–3521.

Deng, J., & Wang, L. (2016). A competitive memetic algorithm for multiobjective
distributed permutation flow shop scheduling problem. Swarm & Evolutionary
Computation, 32, 107–112.

Feng, X., Zheng, F., & Xu, Y. (2016). Robust scheduling of a two-stage hybrid flow shop
with uncertain interval processing times. International Journal of Production Research,
54, 3706–3717.

Fernandez-Viagas, V., Perez-Gonzalez, P., & Framinan, J. M. (2018). The distributed
permutation flow shop to minimise the total flowtime. Computers & Industrial
Engineering, 118, 464–477.

Fernandez-Viagas, F., & J. m.. (2020). Design of a testbed for hybrid flow shop
scheduling with identical machines Victor. Computers & Industrial Engineering, 141,
1–11.

Fu, Y.-P., Tian, G.-D., et al. (2019). Stochastic multiobjective modelling and optimization
of an energy-conscious distributed permutation flow shop scheduling problem with
the total tardiness constraint. Journal of Cleaner Production, 226, 515–525.

Han, W., Deng, Q., Gong, G., et al. (2020). Multiobjective evolutionary algorithms with
heuristic decoding for hybrid flow shop scheduling problem with worker constraint.
Expert Systems with Applications, 168, 1–17.

Han, Y.-Y., Gong, D.-W., Jin, Y.-C., et al. (2019). Evolutionary Multiobjective Blocking
Lot-Streaming Flow Shop Scheduling with Machine Breakdowns. IEEE Transactions
on Cybernetics, 49, 184–197.

Han, Y.-Y., Li, J.-Q., Sang, H.-Y., et al. (2020). Discrete evolutionary multiobjective
optimization for energy-efficient blocking flow shop scheduling with setup time.
Applied Soft Computing, 93, 1–15.

Huang, J.-P., Pan, Q.-K., & Gao, L. (2020). An effective iterated greedy method for the
distributed permutation flowshop scheduling problem with sequence-dependent
setup times. Swarm and Evolutionary Computation, 59, 1–18.

Li, J.-Q., Sang, H.-Y., Han, Y.-Y., et al. (2018). Efficient multiobjective optimization
algorithm for hybrid flow shop scheduling problems with setup energy
consumptions. Journal of Cleaner Production, 181, 584–598.

Li, J.-Q., Song, M.-X., Wang, L., et al. (2020). Hybrid Artificial Bee Colony Algorithm for
a Parallel Batching Distributed Flow-Shop Problem with Deteriorating Jobs. IEEE
Transactions on Cybernetics, 50, 2425–2439.

Li, Y.-L., Xin, Y.-L., Gao, L., & Meng, L.-L. (2020). An Improved Artificial Bee Colony
Algorithm for Distributed Heterogeneous Hybrid Flowshop Scheduling Problem with
Sequence-Dependent Setup Times. Computers & Industrial Engineering, 147, 1–12.

Lin, J., Wang, Z.-J., & Li, X. (2017). A backtracking search hyper-heuristic for the
distributed assembly flow-shop scheduling problem. Swarm & Evolutionary
Computation, 36, 124–135.

Liu, S.-W., Pei, J., Cheng, H., et al. (2019). Two-stage hybrid flow shop scheduling on
parallel batching machines considering a job-dependent deteriorating effect and
non-identical job sizes. Applied Soft Computing, 84, 1–15.

H.-X. Qin et al.

http://refhub.elsevier.com/S0957-4174(22)00631-5/h0005
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0005
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0005
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0010
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0010
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0010
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0015
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0015
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0015
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0020
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0020
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0020
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0025
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0025
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0025
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0030
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0030
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0030
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0035
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0035
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0035
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0040
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0040
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0040
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0045
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0045
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0045
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0050
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0050
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0050
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0055
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0055
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0055
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0060
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0060
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0060
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0065
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0065
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0065
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0070
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0070
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0070
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0075
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0075
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0075
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0080
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0080
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0080
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0085
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0085
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0085

Expert Systems With Applications 201 (2022) 117256

15

Long, J., Zheng, Z., Gao, X., & Pardalos, P. M. (2018). Scheduling a realistic hybrid flow
shop with stage skipping and adjustable processing time in steel plants. Applied Soft
Computing, 64, 536–549.

Marichelvam, M. K., Geetha, M., et al. (2019). An improved particle swarm optimization
algorithm to solve hybrid flowshop scheduling problems with the effect of human
factors – a case study. Computers & Operations Research, 114, 1–9.

Pan, Q.-K., Gao, L., & Wang, L. (2020). An Effective Cooperative Co-Evolutionary
Algorithm for Distributed Flowshop Group Scheduling Problems. IEEE Transactions
on Cybernetics, 99, 1–14.

Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee colony
algorithm for the hybrid flowshop scheduling problem with makespan minimization.
Omega, 45, 42–56.

Peng, K., Pan, Q.-K., Gao, L., Zhang, B., & Pang, X. (2018). An improved artificial bee
colony algorithm for real-world hybrid flowshop rescheduling in steelmaking-
refining-continuous casting process. Computers and Industrial Engineering, 122,
235–250.

Qin, H.-X., Han, Y.-Y., Chen, Q.-D., et al. (2021a). A Double Level Mutation Iterated
Greedy Algorithm for Blocking Hybrid Flow Shop Scheduling. Control and Decision,
1–10. https://doi.org/10.13195/j.kzyjc.2021.0607.

Qin, H.-X., Han, Y.-Y., Zhang, B., Meng, L.-L., et al. (2021b). An improved iterated greedy
algorithm for the energy-efficient blocking hybrid flow shop scheduling problem.
Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2021.100992

Qin, M., Wang, R., Shi, Z., et al. (2019). A Genetic Programming-Based Scheduling
Approach for Hybrid Flow Shop With a Batch Processor and Waiting Time
Constraint. IEEE Transactions on Automation Science and Engineering, 99, 1–12.

Ribas, I., Companys, R., & Tort-Martorell, X. (2011). An iterated greedy algorithm for the
flowshop scheduling problem with blocking. Omega, 39, 293–301.

Ribas, I., Companys, R., & Tort-Martorell, X. (2015). An efficient Discrete Artificial Bee
Colony algorithm for the blocking flow shop problem with total flowtime
minimization. Expert Systems with Applications, 42, 6155–6167.

Ribas, I., Companys, R., & Tort-Martorell, X. (2019). An Iterated Greedy Algorithm for
Solving the Total Tardiness Parallel Blocking Flow Shop Scheduling Problem. Expert
Systems with Applications, 121, 347–361.

Ruben, R., & Thomas, S. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
177, 2033–2049.

Ruiz, R., Pan, Q.-K., & Naderi, B. (2019). Iterated Greedy methods for the distributed
permutation flowshop scheduling problem. Omega, 83, 213–222.

Salvador, M. S. (1973). A Solution to a Special Class of Flow Shop Scheduling Problems (pp.
83–91). Berlin Heidelberg: Symposium on the Theory of Scheduling and Its
Applications. Springer.

Shao, W., Shao, Z., & Pi, D.-C. (2020). Modeling and multi-neighborhood iterated greedy
algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based
Systems, 194, 1–17.

Shao, W.-S., Shao, Z.-S., & Pi, D.-C. (2021). An Ant Colony Optimization Behavior-Based
MOEA/D for Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem
Under Nonidentical Time-of-Use Electricity Tariffs. IEEE Transactions on Automation
Science and Engineering. https://doi.org/10.1109/TASE.2021.3119353

Shao, Z.-S., Shao, W.-S., & Pi, D.-C. (2020). Effective heuristics and metaheuristics for the
distributed fuzzy blocking flow-shop scheduling problem. Swarm and Evolutionary
Computation, 59, 1–17.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64, 278–285.

Riahi, V., Mostafa Khorramizadeh, M. A., Newton, H., Sattar, A., et al. (2017). Scatter
search for mixed blocking flowshop scheduling. Expert Systems with Application, 79,
20–32.

Wang, G.-C., Gao, L., Li, X.-Y., et al. (2020). Energy-efficient distributed permutation
flow shop scheduling problem using a multiobjective whale swarm algorithm. Swarm
and Evolutionary Computation, 57, 1–17.

Wang, J.-J., & Wang, L. (2020). A Bi-Population Cooperative Memetic Algorithm for
Distributed Hybrid Flow-Shop Scheduling. IEEE Transactions on Emerging Topics in
Computational Intelligence, 99, 1–15.

Wang, S., Liu, M., & Chu, C. (2015). A branch-and-bound algorithm for two-stage no-wait
hybrid flow-shop scheduling. International Journal of Production Research, 53,
1143–1167.

Yu, C., Semeraro, Q., & Matta, A. (2018). A genetic algorithm for the hybrid flow shop
scheduling with unrelated machines and machine eligibility. Computers & Operations
Research, 100, 211–229.

Zhang, B., Pan, Q.-K., Gao, L., et al. (2017). An effective modified migrating birds
optimization for hybrid flowshop scheduling problem with lot streaming. Applied
Soft Computing, 52, 14–27.

Zhang, B., Pan, Q.-K., Gao, L., et al. (2019). A Multiobjective Evolutionary Algorithm
Based on Decomposition for Hybrid Flowshop Green Scheduling Problem. Computers
& Industrial Engineering, 136, 325–344.

Zhang, G., Xing, K., & Cao, F. (2018). Discrete differential evolution algorithm for
distributed blocking flowshop scheduling with makespan criterion. Engineering
Applications of Artificial Intelligence, 76, 96–107.

Zhao, F., Zhao, L., Wang, L., et al. (2020). An Ensemble Discrete Differential Evolution
for the Distributed Blocking Flowshop Scheduling with Minimizing Makespan
Criterion. Expert Systems with Applications, 160, 1–21.

Zheng, J., Wang, L., & Wang, J.-J. (2020). A cooperative coevolution algorithm for
multiobjective fuzzy distributed hybrid flow shop. Knowledge-Based Systems, 194,
1–11.

Ztop, H., Tasgetiren, M. F., Eliiyi, D. T., et al. (2019). Metaheuristic algorithms for the
hybrid flowshop scheduling problem. Computers & Operations Research, 111,
177–196.

H.-X. Qin et al.

http://refhub.elsevier.com/S0957-4174(22)00631-5/h0090
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0090
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0090
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0095
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0095
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0095
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0100
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0100
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0100
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0105
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0105
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0105
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0110
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0110
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0110
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0110
https://doi.org/10.13195/j.kzyjc.2021.0607
https://doi.org/10.1016/j.swevo.2021.100992
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0125
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0125
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0125
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0130
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0130
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0135
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0135
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0135
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0140
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0140
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0140
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0145
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0145
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0145
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0150
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0150
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0155
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0155
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0155
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0160
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0160
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0160
https://doi.org/10.1109/TASE.2021.3119353
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0170
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0170
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0170
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0175
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0175
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0180
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0180
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0180
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0185
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0185
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0185
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0190
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0190
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0190
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0195
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0195
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0195
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0200
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0205
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0210
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0210
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0210
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0215
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0215
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0215
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0220
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0220
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0220
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0225
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0225
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0225
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0230
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0230
http://refhub.elsevier.com/S0957-4174(22)00631-5/h0230

	A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking c ...
	1 Introduction
	1.1 Distributed hybrid flowshop scheduling
	1.2 Distributed heterogeneous hybrid flowshop scheduling with blocking constraints
	1.3 Motivations

	2 Literature review
	3 Problem formulation
	4 CIG algorithm for DHHFSP with blocking constraints
	4.1 Encoding and decoding
	4.2 The initialization methods
	4.3 The neighborhood search strategy
	4.4 The destruction and reconstruction strategy
	4.5 The local intensification strategy
	4.6 The time complexity of CIG

	5 Simulation experiments and analysis
	5.1 Test data
	5.2 Verification of the MILP model
	5.3 The parameter test of the CIG algorithm
	5.4 Comparison of different initialization strategies
	5.5 Performances of neighborhood search and local intensification strategies
	5.6 Performance comparison of all the compared algorithms

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Reference

