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A B S T R A C T   

The hybrid flow shop and distributed flow shop problems have been extensively studied due to their wide in-
dustrial applications. However, the distributed heterogeneous hybrid flow shop problems (DHHFSP) with 
blocking constraints have not yet been well studied up to date. This paper considers how to arrange a variety of 
jobs to different heterogeneous factories, and each factory has a minimal makespan. The innovations of this 
paper lie in presenting a mathematical model of the DHHFSP with blocking constraints and designing a 
collaborative iterative greedy (CIG) algorithm. The CIG contains the problem-specific initialization strategy, the 
neighborhood search strategy, the destruction-reconstruction strategy, and the local intensification strategy. The 
cross-factory and inner-factory neighborhood search strategies based on two swap operators are adopted to reduce 
the blocking time. The local intensification strategy is developed to optimize the scheduling sequence of each 
factory. The proposed algorithm is empirically compared with five state-of-the-art algorithms on 60 different 
instance sets. The experimental results show that the proposed algorithm significantly outperforms the compared 
ones in terms of objective values and relative percentage deviation values.   

1. Introduction 

1.1. Distributed hybrid flowshop scheduling 

With the development of economic globalization, the cooperation 
between different enterprises is getting increasingly close. This coop-
erative feature is more evident in the flow shop scheduling problems. 
The traditional centralized manufacturing mode has been difficult to 
flexibly satisfy the current market demand (Shao et al., 2020). To 
respond to the rapidly changing global markets, the distributed or multi- 
plant manufacturing mode is used to improve enterprises’ resource 
utilization and production efficiency (Wang and Wang, 2020). As a 
variant of the traditional permutation flow shop scheduling problem 
(PFSP), the distributed permutation flow shop scheduling problem 
(DPFSP) is more complex than PFSP (Li et al., 2020). 

To further improve the processing efficiency of the products, enter-
prises begin to embed an efficient production mode, i.e., the identical 
parallel machine scheduling into each factory. This mode is a flexible 
flow shop routing and is usually called hybrid flow shop scheduling 

(HFS) (Ztop et al., 2019; Fernandez-Viagas and Framinan, 2020), which 
can handle multiple jobs simultaneously as long as the machine loads 
are not exceeded (Liu, et al., 2019). In each stage of HFS, there are m (m 
≥ 1) machines in parallel that process the jobs. Some published litera-
tures have proved that this scheduling method can process more jobs in a 
shorter time and reduce the production cost of enterprises (Wang et al., 
2015; Feng et al., 2016). Up to now, the HFS mode has been successfully 
used to solve real-world problems, such as the transistor-liquid crystal 
displays (Choi et al., 2011), steelmaking and refining (Long et al., 2018; 
Peng et al., 2018), etc. Combining the respective advantages of DPFSP 
and HFS, a scheduling mode with more practical application, that is, the 
distributed hybrid flowshop scheduling (DHFS) came into being. Obvi-
ously, this cross-factory scheduling method with parallel production 
lines is more efficient. 

1.2. Distributed heterogeneous hybrid flowshop scheduling with blocking 
constraints 

In the actual processing environment, decision makers are likely to 
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build factories with different processing capacity according to cost 
input, production planning, target groups or other reasons, so as to 
better adapt to the processing conditions in different environments. 
Although the problem becomes complex, it benefits reducing the pro-
duction lead time and the work-in-process inventory, interim storage, 
and associated space requirements. In addition, the research is also 
motivated by a practical engineering case of the heterogeneous factories 
(Shao et al., 2021). In this problem, different factories have different 
numbers of processing machines in each stage, which leads to the het-
erogeneous phenomenon of factories. Therefore, this paper also con-
siders the difference in the number of machines as the reason for the 
heterogeneity of factories. 

Furthermore, in the actual processing factory, due to the storage 
space, process characteristics, or technical reasons (Ribas et al., 2011), 
when the number of jobs exceeds the machine’s load capacity, they will 
be blocked in the current processing stage, resulting in invalid work of 
the machines and extension of completion time. The problem is also 
named distributed heterogeneous hybrid flow shop scheduling problem 
(DHHFSP) with blocking constraints. This also encourages us to design 
appropriate scheduling schemes to reduce the makespan caused by 
blocking. 

1.3. Motivations 

Considering the problem characteristics of DHHFSP with blocking 
constraints, some sub-problems should be considered, such as the 
sequence sort, factory allocation, machine selection, and blocking con-
dition of jobs, need to be addressed simultaneously. Since the sub- 
problems are highly coupled, it is natural to design neighborhood- 
based metaheuristics that implement different strategies. As we know, 
metaheuristics are often used to solve flow shop scheduling problems, 
and have achieved good performance. As a kind of metaheuristic algo-
rithm, Iterative Greedy (IG) algorithm has been used by many scholars 
to solve the related flow shop scheduling problems due to the small 
number of parameters, easy operation and simple process (Ruben et al., 
2007). Different from other metaheuristic algorithms, this algorithm 
iterates only one solution in the whole process, which makes it better to 
explore the solution more deeply. Moreover, IG algorithm has strong 
local search ability due to its greedy insertion strategy, but it has also 
become a limiting factor of the algorithm, resulting in the reduction of 
the diversity of solutions. 

Based on the above advantages and limit, this paper proposed a 
collaborative IG (CIG) algorithm to solve the DHHFSP with blocking 
constraints. In CIG, a new initialization scheme is used to assign 
different jobs to the heterogeneous factories. Then, two cross-factory 
neighborhood strategies are presented to reorder the jobs. Next, we 
perform the destruction and reconstruction operation on the job 
sequence in each factory and suggest a local intensification strategy to 
further reduce the makespan. Finally, these two solutions conduct the 
substitution operations on the inferior solution for the following loop of 
the iteration. 

The contributions of this paper are as follows.  

1) Formulate the DHHFSP with blocking constraints and set up a mixed- 
integer linear programming (MILP) model.  

2) For reducing the influence of unnecessary blocking constraints on 
machining, the CIG algorithm is presented to solve the DHHFSP with 
blocking constraints, in which the Nawaz–Enscore–Ham-Increase 
(NEH_IN) initialization strategy is designed to allocate the jobs to the 
heterogeneous factories.  

3) To further improve the global search ability of the algorithm and 
reduce the blocking conditions of the sequence, this paper present 
the cross-factory and inner-factory neighborhood search strategies, 
respectively, to cooperatively optimize the scheduling sequence.  

4) To reinforce the exploration ability of CIG algorithm and reduce the 
completion time of jobs, this paper develops the local intensification 
strategies to adjust the order of the job sequence in each factory. 

The rest of this paper is organized as follows. In Section 2, compre-
hensive literature reviews are presented. In Section 3, the MILP model of 
the DHHFSP with blocking constraints is formulated. Section 4 explains 
the proposed CIG algorithm, including the framework and the details of 
the strategies. Section 5 tests the parameters and strategies of the CIG 
algorithm and compares it to state of the arts algorithms. The conclu-
sions of this paper and future research direction are provided in Section 
6. 

2. Literature review 

Many intelligent algorithms are proposed to solve the DPFSP. Deng 
and Wang (2016) presented a competitive memetic algorithm to solve 
the multiobjective DPFSP. Fu et al. (2019) proposed a new multi-
objective brain storm optimization algorithm to solve the DPFSP with 
total tardiness constraint. Considering the assembly of jobs, Lin et al. 
(2017) used the backtracking search hyper-heuristic for solving the 
DPFSP. In (Wang et al., 2020), a multiobjective whale swarm algorithm 
is suggested to optimize the objective of energy-efficient in DPFSP. 
Considering the sequence-dependent setup times, Huang et al. (2020) 
presented an effective IG algorithm to solve it. In (Fernandez-Viagas 
et al., 2018; Bargaoui et al., 2017), an iterative improvement algorithm 
and a chemical reaction optimization algorithm are proposed to mini-
mize the total flowtime and makespan of the DPFSP, respectively. In 
addition, Pan et al. (2020) proposed a cooperative co-evolutionary al-
gorithm for the DPFSP with group to minimize the makespan. 

Since the HFSP was raised in 1973 (Salvador, 1973), a wide range of 
scholars have propsed many efficient intelligent optimization algo-
rithms to solve it. Li et al. (2018) proposed the energy-aware multi-
objective optimization algorithm for HFSP with the energy 
consumptions and makespan minimization. Given the setup energy 
consumption, Zhang et al. (2019) developed a multiobjective evolu-
tionary algorithm with decomposition to solve the HFSP. Considering 
the worker constraint, the multiobjective evolutionary algorithm based 
on heuristic decoding was proposed for the HFSP (Han et al., 2020). In 
(Marichelvam et al., 2019), a discrete particle swarm optimization 
(DPSO) algorithm was designed to solve the HFSP with the human 
factors. In (Yu et al., 2018), the genetic algorithm (GA) is used for 
solving the HFSP with machine eligibility and unrelated machines. Ztop 
et al. (2019) presented four variants of IG algorithms and a variable 
block insertion heuristic to solve the HFSP to minimize the total flow 
time. Qin et al. (2019) developed the genetic programming-based 
scheduling algorithm to solve the HFSP with waiting time and batch 
processor constraints. 

Up to now, the research on the combination of distributed factory 
and parallel machine scheduling is still rather limited. As far as we 
know, the existing algorithms about the DHFSP are proposed by Shao 
et al. (2020), in which the modeling and multi-neighborhood IG algo-
rithm was proposed to optimize the makespan. Zheng et al. (2020) 
developed the cooperative coevolution algorithm for solving the mul-
tiobjective fuzzy DHFSP. Considering the multiprocessor tasks, Cai et al. 
(2020) designed a dynamic shuffled frog-leaping algorithm to solve the 
DHFSP. To minimize the makespan of the job sequence, Li et al. (2020) 
used the hybrid discrete artificial bee colony (DABC) algorithm to solve 
the DHFSP with deteriorating jobs. Given the distributed heterogeneous 
factories, an improved artificial bee colony algorithm is proposed to 
solve the DHHFSP with sequence-dependent setup times (Li et al., 
2020). 

In view of these blocking constraints, many efficient algorithms have 
been proposed to address the related problems. Riahi et al. (2017) 
developed a scatter search for the mixed BFSP. Han et al. (2019) 
designed the evolutionary multiobjective robust scheduling algorithm to 
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solve the blocking lot-streaming FSP. Ribas et al. (2015) designed a 
DABC algorithm to solve the blocking FSP (BFSP) with the objective of 
total flowtime minimization. Later, the IG algorithm was proposed to 
solve the total tardiness parallel BFSP (Ribas et al., 2019). Zhang et al. 
(2018) utilized the discrete differential evolution (DDE) algorithm to 
optimize the makespan of the distributed blocking flow shop scheduling 
problem (DBFSP). For the distributed fuzzy BFSP, some effective heu-
ristics and metaheuristics have been developed to solve this problem 
(Shao et al., 2020). In (Zhao et al., 2020), to minimize the makespan, an 
ensemble DDE is presented for solving the DBFSP. Considering the setup 
time of the BFSP, Han et al. (2020) proposed the discrete evolutionary 
multiobjective optimization algorithm to optimize the makespan and 
energy consumption. 

As we can see, the DFSP, the HFSP, and the BFSP have received much 
attention in recent years. However, the DHFSP under the blocking and 
heterogeneous environment has not been addressed. Due to its practical 
relevance, it is worthwhile to develop effective and efficient algorithms 
for the above problem. 

3. Problem formulation 

In DHHFSP with blocking constraints, there are F heterogeneous 
factories, and each factory has the same number of processing stages. In 
one factory, at least one stage has identical, unrelated parallel machines. 
In stage s of the factory, there are m (m ≥ 1) machines with no buffers to 
store the processed jobs. Each machine is available and without break-
downs. A series of n jobs have to be processed on one of these F factories. 
Each job is processed orderly in the sequential stages. Once the job is 
determined to be processed in one machine of the stage, it can not be 
interrupted. In a word, the DHHFSP with blocking constraints consists of 
three subproblems, i.e., scheduling and sorting of jobs, selecting fac-
tories for jobs, and assigning machines to jobs. The optimization 
objective of the DHHFSP with blocking constraints is the makespan. 
Based on these definitions and literature (Wang and Wang, 2020), this 
paper gives the MILP model of the DHHFSP with blocking constraints. 

Parameters and sets: 
J: The number of jobs. 
F: The number of factories. 
S: The number of stages in each factory. 
j: The index of jobs,j ∈ {1,2, ...,J}. 
f : The index of factories,f ∈ {1,2, ...,F}. 
s: The index of stages,s ∈ {1,2, ...,S}. 
m: The index of machines at each stage. 
mf ,s: The number of parallel machines at stage s in factoryf . 
pj,s: The processing time of job j at stages. 
Decision variables: 
Cmax: The makespan of the sequence. 
Bj,s: The beginning time of job j at stages. 
Cj,s: The completion time of job j at stages. 
Dj,s: The departure time of job j at stages. 
xf ,j: Decision variables, 1 if the job j is processed in factoryf , 

0 otherwise. 
yf ,s,j,m: Decision variables, 1 if the job j is processed on machine m at 

stage s in factoryf , 0 otherwise. 
zf ,s,j,j′ : Decision variables, 1 if job j is at any position before job j′ at 

stage s in factoryf , 0 otherwise. 
Objective: 

MinimizeCmax (1) 

Constraints: 

Table 1 
Processing time of different jobs in each stage.  

Job Stage1 Stage2 

1 5 15 
2 7 7 
3 12 3 
4 3 5 
5 3 3 
6 6 13  

Fig. 1. Gantt charts of different scenes. (a) and (b) are the comparison of the 
different scheduling sequence under same factory configurations. (b) and (c) 
are the comparison of the same scheduling sequence under the different ma-
chine configurations of each factory (heterogeneous factories). 
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∑F

f=1
xf ,j = 1, ∀j (2)  

∑mf ,s

m=1
yf ,s,j,m = xf ,j,∀f , j, s (3)  

Bj,s⩾0, ∀j, s (4)  

Cj,s = Bj,s + pj,s, ∀j, s (5)  

zf ,s,j,j′ + zf ,s,j′ ,j⩽1, ∀f , s, j ∕= j′ (6)  

zf ,s,j,j′ + zf ,s,j′ ,j⩾yf ,s,j,m + yf ,s,j′ ,m − 1,
∀f , s, j′ ∕= j,m ∈

{
1, 2...,mf ,s

} (7)  

Bj′ ,s − Dj,s + U⋅
(
3 − yf ,s,j,m − yf ,s,j′ ,m − zf ,s,j,j′

)
⩾0,

∀j ∕= j′ , f , s,m ∈ \{ 1, 2...,mf ,s\}
(8)  

Dj,s = Bj,s+1,∀j, s ∈ {1, ..., S − 1} (9)  

Cj,s <= Dj,s,∀j, s (10)  

Cmax >= Dj,S, ∀j (11) 

Equation (1) is the optimization objective of the problem. Constraint 
(2) determines that each job can only be assigned to one factory. 
Constraint (3) ensures that a job that allocated to one factory must be 
processed by one machine at each stage. Constraint (4) describes that the 
start time of the job at each stage is not less than 0. constraint (5) shows 
that the completion time of one job at each stage equals to the sum of its 
start time and processing time. Constraints (6–7) ensure that the ma-
chine can only operate one job at one time and the job can only be 
processed by one machine. Constraint (8) indicates that the job can be 
processed only when its previous job is completed in the same machine. 
Constraint (9) defines that, except the last stage, the start time of the job 
equals to the departure time of its previous stage, and Constraint (10) 
expresses that the departure time of the job is not less than its comple-
tion time at the same stage. Constraint (11) ensures that the makespan is 
not less than all of the jobs’ departure time at the last stage. 

To help readers understand the impact caused by different sequence 
and allocation of jobs more intuitively, this paper gives the Gantt charts 
with two heterogeneous factories, two stages, and six jobs to exemplify 
the process. The processing time of each job is given in Table 1. In 
factory 1, there is one machine in stage 1 and two parallel machines in 
stage 2. In factory 2, two parallel machines are set in stage 1, and one 
machine is set in stage 2. All the jobs have the same processing time in 
the same stage. 

In Fig. 1 (a), the job sequence is π = {1, 2, 4; 3, 5, 6}, which illustrates 
the jobs 1, 2, and 4 are assigned to process sequentially in the first stage 

of factory 1, while jobs 3, 5, and 6 are processed in the first stage of 
factory 2. In Fig. 1 (b), the job sequence is π = {1, 3, 6; 2, 4, 5}, which 
shows that jobs 1, 3, and 6 are allocated to process sequentially in the 
first stage of factory 1, while jobs 2, 4, and 5 are processed sequentially 
in the first stage of factory 2. As shown from Fig. 1 (a) and (b), the 
different scheduling sequences make the makespan objective different 
under the same environment. the makespan of sequence {1, 2, 4; 3, 5, 6} 
and {1, 3, 6; 2, 4, 5} are 25 and 36, respectively. The gap is quite large 
between these two scheduling schemes. Moreover, with the continuous 
expansion of jobs’ scale, the gap (sum of time interval which machines 
are in idle and blocking state) may expand due to a bad arrangement 
order. Therefore, it is essential to design reasonable scheduling strate-
gies to help enterprises reduce makespan. 

The scheduling sequence of Fig. 1 (c) is the same as Fig. 1(b). 
However, the machine configuration is different. That is, the factories 
are heterogeneous. By comparing Fig. 1 (b-c), we can observe that 
although the processing sequence is the same, the completion time is 
different due to the influence of machine configuration in heterogeneous 
factories. The completion time difference between the two processing 
factories is 8. We can see that the configuration of heterogeneous fac-
tories has a significant impact on the completion time. 

4. CIG algorithm for DHHFSP with blocking constraints 

In this section, we first describe the proposed CIG algorithm frame-
work (see in Algorithm 1). CIG consists of the initialization, the neigh-
borhood search strategies, the destruction-reconstruction, and the local 
intensification strategy. First, based on the characteristics of multiple 
factories, the Nawaz-Enscore-Ham with ascending order (NEH_F_asc) 
and descending order (NEH_F_des) initialization methods are utilized, 
respectively, to allocate the jobs to factories. Then, the cross-factory and 
inner-factory neighborhood search strategies are proposed to explore the 
globally better solutions. Next, the destruction-reconstruction method is 
adopted to improve the ordering of jobs. Finally, the local intensification 
strategy is presented to increase the quality of the solution further. The 
collaboration process between cross-factory and inner-factory is shown 
in Fig. 2.   

Algorithm 1 The framework of the CIG algorithm 

Input:π = (1, 2, 3..., n), parameter d 
Output:πbest and makespan 
Begin: 

π = NEH F asc(πorigin),π′

= NEH F des(πorigin)

While the termination criterion is not satisfied do 
π1←Random critical factory swap(π)

π2←Random discretionary factory swap(π′

)
% Cross-factory neighborhood search 

For f = 1 to F % Inner-factory neighborhood search 
π1′

←Destruction Reconstruction(π1, d)
π2′

←Destruction Reconstruction(π2, d)

(continued on next page) 

Fig. 2. collaboration process between cross-factory and inner-factory.  
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(continued ) 

Algorithm 1 The framework of the CIG algorithm 

π1′ ′ ←Local Intensification (π1′

)

π2′ ′ ←Local Intensification (π2′

)

If f(π2′ ′

) < f(π1′ ′

) then 
π = π1′

= π2′ ′

Else 
π = π2′

= π1′ ′

End 
End 
If f(π) < f(πbest) then 

πbest = π 
makespan = f(πbest)

End 
End 
End  

Notably, the key issues of the DHHFSP are how to allocate jobs to 
appropriate factories and how to generate the scheduling sequence of 
operations on machines with minimal makespan. Due to the above two 
issues being coupled, it is necessary to establish a collaboration between 
cross-factory and inner-factory. The above motivate us to implement a 
collaborative strategy. First, the different neighborhood search strate-
gies based on different factories are executed, which changes or opti-
mizes the allocating jobs to appropriate factories. Then, based on the 
above allocation, the destruction-reconstruction and local intensifica-
tion strategies are performed to improve the quality of solution for each 
factory. Next, the current best solution obtained by an acceptance cri-
terion is used to update or influence the neighborhood solution and 
continue to participate in the next cycle. 

4.1. Encoding and decoding 

A good encoding–decoding method can help us obtain a reasonable 
and effective scheduling sequence, especially for the complex combi-
natorial optimization problem. In DHHFSP with blocking constraints, 
the scheduling sequence and the machine selection should be deter-
mined in each factory. The solution is denoted asπ = {π1; π2; ...; πF} =
{

π1
1, π1

2, ..., π1
sum1; π2

sum1+1,…, π2
sum2; ...; πF

sumF− 1, ..., πF
sumF

}
, πf represents 

the job sequence which is allocated to factory f, πf
j represents the j-th job 

processing in factory f, f = 1, 2, …, F. sumf represents the sum of all jobs 
in the first f factories. Each job must be allocated to only one factory to 
process. As can be seen from Fig. 1 (a), sequence π is{π1; π2}.π1 =

{π1
1, π1

2, π1
3} = {1,2,4},π2 = {π2

4, π2
5, π2

6} = {3,5,6}, that is jobs 1, 2, and 
4 are processed sequentially in factory 1, the jobs 3, 5, and 6 are pro-
cessed in factory 2. 

For each factory, the processing of decoding adopts the first- 
input–output rule to determine the sequence according to the comple-
ment time of the jobs, and the first available machine rule to assign 
machine to the job (see in Fig. 1). The details refer to (Qin et al., 2021a; 
Pan et al., 2014). 

4.2. The initialization methods 

The existence of blocking constraints affects the completion time of 
the job sequence. For the CIG algorithm, the quality of the initial solu-
tion directly influences the makespan of the job sequence. The NEH_F 
method has been proved to be an effective initialization strategy when 
solving the DPFSP based on NEH (Huang et al., 2020). Based on the 
research, this paper designs an initial method with ascending order of 
processing time, named NEH_F_asc to complete the initialization of the 
solution. To improve the diversity and the convergence of the solution, 
NEH_F_des and NEH_F_asc are simultaneously chosen to generate the two 
initialization solutions. Here, the only difference between NEH_F_des and 
NEH_F_asc is that the initial solution π is generated by sorting jobs 

according to their descreasing total processing time. In NEH_F_asc, we 
firstly arrange the job sequence in ascending order. Secondly, extract the 
same number of jobs as the number of factories, and then place these 
jobs into each factory one by one in order to ensure that each factory can 
have one job in it. For the rest jobs of the sequence π, (1) we take out the 
first job and try to insert it in all positions of all factories, and the po-
sition with the minimal makespan is selected. (2) the above first job is 
deleted from π. (3) Repeated the above steps (1) and (2), until all the jobs 
are assigned into factory. At this time, we can guarantee the makespan of 
each factory is small as much as possible, but not guarantee the number 
of jobs in all factories is the same or average. The pseudocode of 
NEH_F_asc is shown in Algorithm 2.  

Algorithm 2 NEH_F_asc initialization method 

Input:π origin = (1, 2,3...n)
Output:π 
Begin: 

π = SortAscending(
∑S

s=1pj,s), j = 1,2…n 
For f = 1 to F 

π f = πf % Assign the f th job to factory f one by one. 
End 
For j = F + 1 to n 

For f = 1 to F 

πf temp ←
insert ith posistion

i=1 to |πf |
extract(πj)

π f = argmin|π
f |

i=1 f(π f temp)

End 
End 

End  

4.3. The neighborhood search strategy 

Generally speaking, the IG algorithm iterates a solution continu-
ously, which will improve its local search ability, but its performance in 
global search ability is not outstanding. The time complexity of the 
swap-based strategy is less than that of insert-based strategy (O (n2) vs. 
O(n3)). For example, we perform the swap operations on n jobs. Each job 
exchanges positions with all other jobs, so there are total n-1 exchanges. 
The total time complexity is O(n2). When we execute the insertion op-
erations on n jobs. Every job first selects the positions, there are n-1 
positions to be selected. Once a position p is selected, there are n-p jobs 
should be moved. If all the n jobs should execute the insertion operation, 
the total time complexity is O(n3), which is larger than the time 
complexity of swap operation. 

Thus, in the proposed algorithm, the neighborhood search strategy 
based on swap is proposed for the two solutions to enhance the global 
search ability of the IG algorithm, improve the efficiency of the job 
sequencing and reduce the makespan caused by blocking constraints. In 
addition, for the distributed heterogeneous characteristic of DHHFSP, 
there are two kinds of factories, i.e., critical and non-critical factories. It 
is a lack of the neighborhood disturbing strategies of assigning jobs to 
the two kinds of factories. Thus, in our neighborhood search, random- 
critical factory disturbing and random-discretionary factory disturbing are 
considered.  

1) Random-critical factory disturbing: (a) The sequence in factory f with 
the maximum completion time (fmax) is selected, then a random 
factory (frandom) is selected. (b) Randomly select a job from each of 
the two factories and swap them. (c) If the makespan of the new 
sequence obtained is less than the original sequence, the new one 
replaces the old one. (d) Repeat the steps (a-c) until the termination 
criterion is met.  

2) Random-discretionary factory disturbing: (a) Two job sequences are 
randomly selected from different factories, respectively. (b) 
Randomly select a job from each of the selected factories and swap 
them. (c) If the makespan of new sequence is less than the original 
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sequence, it becomes the new sequence. (d) Go to step (a) until the 
termination criterion is satisfied. 

The framework of the neighborhood search strategy is given in Al-
gorithm 3.  

Algorithm 3 The neighborhood search strategy 

Input:π,π′

Output:π1,π2 

Begin: 
πtemp1 = π,πtemp2 = π′

πtemp1: Random-critical factory disturbing: 
fmax = argminF

f=1f(πtemp1)% Find the factory with the maximum makespan 
do { 

frandonm = rand()%F 
} While (frandonm = = fmax) 
For j = 1 to n2 

pos1 = rand()%|πtemp1 fmax |,pos2 = rand()%|πtemp1 frandom |

πtemp1 new = swap(πtemp1
pos1 , πtemp1

pos2 )

If f(πtemp1 new) < f(πtemp1) then 
πtemp1 = πtemp1 new 

Else 
πtemp1 new = πtemp1 

End 
End 
If f(πtemp1) < f(π) then 

π = πtemp1 

End 
πtemp2: Random-discretionary factory disturbing: 

frandonm1 = rand()%F 
do { 

frandonm2 = rand()%F 
} While (frandonm1 = = frandonm2) 

For j = 1 to n2 

pos3 = rand()%|πtemp2 frandom1 |,pos4 = rand()%|πtemp2 frandom2 |

πtemp2 new = swap(πtemp2
pos3 , πtemp2

pos4 )

If f(πtemp2 new) < f(πtemp2) then 
πtemp2 = πtemp2 new 

Else 
πtemp2 new = πtemp2 

End 
End 
If f(πtemp2) < f(π2) then 

π2 = πtemp2 

End 
End  

4.4. The destruction and reconstruction strategy 

In the traditional IG algorithm, the destruction and reconstruction 
strategy can effectively explore local neighborhoods more in-depth. This 
operation has a direct impact on finding a better scheduling sequence. 
To enhance the local search ability of the proposed algorithm, we 
introduce the destruction and reconstruction strategy to reduce the 
makespan caused by the blocking constraints. The steps are as follows 
(see in Algorithm 4): (1) In a factory, we randomly extract d jobs from 
the current job sequence. (2) Insert the first extracted job into all posi-
tions of the remaining job sequence. (3) The minimum makespan of the 
sequence is selected to be the current remaining sequence. (4) Repeat 
the steps (2–3) until the d jobs are all inserted into the job sequence. 

The details of the destruction and reconstruction strategy are shown 
in Algorithm 4.  

Algorithm 4 The destruction and reconstruction strategy 

Input:π 1, π 2, parameter d 
Output:π 1′

, π 2′

Begin: 
For f = 1 to F 

π temp1 f = π 1 f %π 1 f : The job sequence of factory f 
Ud

i=1 = extract(π temp1 f )

For j = 1 to d 

(continued on next column)  

(continued ) 

Algorithm 4 The destruction and reconstruction strategy 

π temp1 f ′ = π temp1 f\Uj,π temp1 f ′

←
insert ith posistion

i=1 to |π temp1 f |
Uj 

π temp1 f = argmin|π
temp1 f |

i=1 f(π temp1 f ′

)

End 
If f(πtemp1 f ) < f(π1 f ) then 

π 1 ′ f = π temp1 f 

End 
End 

π2 performs the same process as π1 

End  

4.5. The local intensification strategy 

The blocking constraints prolong the completion time of the job 
sequence, which reduces the production efficiency of the enterprise. To 
further improve the algorithm’s performance and reduce the blocking 
time, we develop a local intensification strategy based on swap to solve 
the DHHFSP with blocking constraints. The local intensification strategy 
contains two kinds of swap operators: random swap and sequential 
swap. Based on the sequence π1′

and π2′

obtained from the destruction 
and reconstruction strategy. 

The details of the proposed strategy are given as follows:  

1) Random swap: (a) Randomly select two different jobs in the same 
sequence. (b) Swap the positions of the two jobs. (c) If the completion 
time of the sequence is reduced, the new sequence replaces the old 
sequence. (d) Repeat steps (a-c) until the termination criterion is 
met.  

2) Sequential swap: Set i = 1, j = 1. (a) Select the ith job in the sequence. 
(b) Select the jth job in the same sequence. (c) Swap the ith job and 
the jth job. If the job sequence is improved, it replaces the original 
sequence. (d) j++, repeat the step (c), until j == n. (e) i++, skip to 
step (b), until i == n. 

To make it easier for readers to understand, we give the pseudo-code 
of the strategy. The process is shown in Algorithm 5.  

Algorithm 5 The local intensification strategy 

Input:π1′

,π2′

Output:π1′ ′

,π2′ ′

Begin: 
r = rand()%2 
Caser = = 0: 
Random swap: 
For f = 1 to F 

For j = 1 to n2 

πtemp1 f = π1′ f %π1′ f : The job sequence of factory f 
For j = 1 to n2 

p1 = rand()%|πtemp1 f |

do { 
p2 = rand()%|πtemp1 f |

} While (p1 = = p2) 
Swap(πtemp1 f

p1 , πtemp1 f
p2 )

If f(πtemp1 f ) < f(π1′ f ) then 
π1′ ′ f = πtemp1 f 

End 
End 
End 

End 
Caser = = 1: 
Sequential swap: 
For f = 1 to F 
For i = 1 to |πtemp1 f |

πtemp1 f = π1′ f 

For j = 1 to |πtemp1 f |

Swap(πtemp1 f
i , πtemp1 f

j )

(continued on next page) 
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(continued ) 

Algorithm 5 The local intensification strategy 

If f(πtemp1 f ) < f(π1′ f ) then 
π1′ ′ f = πtemp1 f 

End 
End 
End 
End 
π2′

performs the same process as π1′

End  

4.6. The time complexity of CIG 

Assume that there are n jobs, f factories. The numbers of jobs and the 
stages in each factory are n/f and s, respectively. The computational 
complexity of the whole CGI algorithm mainly consists of initialization, 
neighborhood search, destruction & reconstruction, and local intensifi-
cation strategies. The time complexity of the initialization strategy is O 
(n*f*s*n/f) that approaches O(n2s). In while loop, we assume that the 
number of iterations of neighborhood search strategy is w1, the time 
complexity of this strategy is O(w1n2). The time complexities of the 
destruction and reconstruction strategy and the local intensification strategy 
are O(w2*d*f*s*n/f) and O(w3(n4 + s n3/f2)), respectively, where w2 and 
w3 are the numbers of iterations of destruction and reconstruction and 
local intensification strategy, respectively. Thus, for the whole CGI algo-
rithm, the time complexity of the CIG is O(n(s n + w1 n + w2ds + w3(n4 +

s n2/f2)) that approaches O(n5). In addition, in the proposed CIG, we 
propose the new strategies based on swap to replace the greedy inser-
tion. Compared with other IG algorithms, these strategies reduce the 
time complexity. Thus, CIG can execute more times under the same 
termination condition. Compared with other swarm intelligent com-
parison algorithms, the number of solutions of this algorithm is far less 
than that of these comparison algorithms. Therefore, in the whole iter-
ative process, we only need to iterate the two solutions at a deeper level, 
rather than focusing on many solutions. 

5. Simulation experiments and analysis 

The experimental simulation environment of all algorithms is a PC 
with 2.60 GHZ Intel Core i7 Pentium processor with16 GB RAM. The 
algorithms are coded by Visual Studio 2019C++ in Microsoft Windows 
10 operating system. Referring to the literature (Zhang et al., 2017), this 
paper adopts the same elapsed CPU running time as the termination 
criterion of all comparison algorithms. 

5.1. Test data 

To more systematically verify the performance of all algorithms, we 
give comprehensive data. The number of job set is n∈{100, 200, 300, 
400, 500}, the factory set is f∈{2, 3, 4, 5}, the stage set is S∈{5, 8, 10}. 
The number of jobs, factories, and stages constitute the instance scalen×
f × s. Therefore, the benchmark set consists of 60 different scale in-
stances. We refer to the literature (Huang et al., 2020; Taillard, 1993) to 
set the values of the termination criterion, noted as theTimeLimit = ω×

n× f × S, ω is a parameter that controls the length of running time, in 
this paper, we set the value of ω as 5 and 10 to control the length of 
running time. The processing time of the jobs is generated randomly 
within the range [1, 99] (Qin et al., 2021b). These experimental settings 
are general in the flow shop scheduling research, the source code and 
test data in this paper can be found in https://github.com/wangyut 
ing9836/DBHFSP. In addition, the number of processing machines is 
randomly generated from the range [1, 5]. We utilize the relative 

percentage increase (RPI) to estimate the difference between the current 
value obtained and the best value. The RPI is calculated as follows: 

RPI = (ci − cbest)/cbest × 100 (12) 

where RPI is the relative percentage increase, ci is the average value 
of makespan of a instance obtained by an algorithm independently 
performed several times, and the cbest is the minimum value of a instance 
obtained by all the compared algorithms independently performed 
several times. We first calculate RPI of each instance, and then compute 
the average values of RPI for all the instances. It is notable that the range 
of RPI value obtained by the different scale, respectively, has a little 
difference according to the simulation experimental results. Thus, in the 
following tables, the “mean” values that is the average values of RPI of 
all the instances, can be calculated to test the overall performance for 
different factory configurations. 

5.2. Verification of the MILP model 

In this section, we validate the proposed MILP and test the perfor-
mance of the MILP and CIG algorithm, respectively, on 12 small-scale 
instances. The MILP of DHHFSP with blocking constraints is coded in 
the CPLEX 12.6 software, and the maximal termination criterion is set 
1000 s. If the optimal solution can be found within 1000 s, it will be 
terminated. For the CIG algorithm, the termination time is set 
toTimeLimit = 10× n× f × S. In addition, the CIG algorithm indepen-
dently performed 20 times for each instance. Table 2 gives the RPI, 
makespan, and time obtained by the MILP and CIG algorithm. Among 
them, the makespan of CIG algorithm is the average value of 20 
experimental results. 

As can be seen from Table 2, MILP gets the best RPI and makespan 
values for the first seven instances and the first nine instances, 

Table 2 
RPI and Makespan values for the MILP Model and CIG algorithm.   

MILP CIG 
F_n_S RPI makespan Time(s) RPI makespan Time(s) 

2_8_2  0.00 201 0.66  4.98 211  0.32 
2_8_3  0.00 263 0.73  1.90 268  0.48 
2_8_4  0.00 304 0.72  2.63 312  0.64 
2_12_2  0.00 316 1000  0.00 316  0.48 
2_12_3  0.00 385 29.04  0.31 386.2  0.72 
2_12_4  0.00 419 126.16  0.72 422  0.96 
2_16_2  0.00 439 1000  0.06 439.25  0.64 
2_16_3  0.63 478 1000  1.23 480.85  0.96 
2_16_4  0.57 530 1000  0.99 532.2  1.28 
2_20_2  0.00 528 1000  0.00 528  0.8 
2_20_3  1.20 592 1000  0.24 586.4  1.2 
2_20_4  4.38 644 1000  0.52 620.2  1.6  

Table 3 
ARPI values in terms of different factories and jobs (minimum APRI values are in 
bold).   

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 

f = 2  0.25  0.68  0.27  0.41 0.31 0.33 
f = 3  0.62  3.46  0.67  1.14 0.69 0.8 
f = 4  2.63  2.8  2.03  2.61 0.91 1.23 
f = 5  3.28  6.22  1.34  4.25 1.31 1.64 
Mean  1.7  3.29  1.08  2.1 0.81 1 
n = 100  0.86  1.34  0.92  0.85 0.73 0.66 
n = 200  1.24  3.27  1.07  1.33 1.04 1.9 
n = 300  0.71  2.87  0.25  2.56 0.34 0.5 
n = 400  4.88  2.99  1.48  3.65 1 0.97 
n = 500  0.59  4.83  1.5  1.45 0.93 0.91 
Mean  1.66  3.06  1.04  1.97 0.81 0.99  
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respectively. However, as the problem size increases, i.e., 2_20_3 and 
2_20_4, the superiority of CIG algorithm over CPLEX increases with 
respect to RPI, makespan and run time. From Table 2, we can conclude 
that it is difficult to obtain a good solution in a short time for the large- 
scale instances of MILP. Thus, the proposed CIG algorithm is effective to 
solve the DHHFSP with blocking constraints. 

5.3. The parameter test of the CIG algorithm 

Although the CIG algorithm has few parameters, the parameter 
d (the number of destroyed jobs) is critical, which directly affects the 
algorithm’s performance. Thus, in this subsection, we select a different 
number of destruction jobs, d = {2, 3, 4, 5, 6, 7}, to test the effect of 
parameter value on results. Further, we classify to test the influence 
from multiple angles, i.e., the scale of the factory f = {2, 3, 4, 5}and the 
scale of the job n = {100, 200, 300, 400, 500}, S = {5, 8, 10}, thus, there 
are 5 × 4 × 3 = 60 differernt type combinations. For these 60 instances, 
we give the Average RPI (ARPI) value classified by the number of fac-
tories and the number of jobs to detect the effect of d parameter from 
different angles.. 

From Table 3, we can see that when the value of parameter d is equal 
to 6, the minimum mean value is obtained when considering different 
factories and different jobs. The results listed in Table 3 show that the 
different values of parameter d have a large sensitivity, and the variation 
trend of the influence on the proposed algorithm is consistent in terms of 
different factories and jobs. In fact, with the increase of d value, more 
and more jobs are destroyed and inserted into various positions to 
improve the quality of the job sequence. However, when the value of d is 
greater than 6, its mean value decreases. It shows that setting d at a large 
value will take a long time to explore all jobs, and lose opportunities to 
generate promising solutions by a number of iterations, which will result 
in reducing the performance of the algorithm. In order to more clearly 
see the differences of different d values in all scale instances, we draw a 
box diagram for all results. The results are shown in Fig. 3. As can be 

seen, when d = 6, the position of the median line in its rectangle is the 
lowest, and by analysing the values in Table 3. Through the experi-
mental tests of the parameter d, we choose d = 6 as the parameter value 
used in the proposed algorithm. 

5.4. Comparison of different initialization strategies 

To further investigate the performance of the proposed initialization 
strategies, we list the results obtained by the different initialization 
strategies in terms of the ARPI values. To further investigate the per-
formance of the proposed initialization strategies, we list the results 
obtained by the different initialization strategies in terms of the ARPI 
values for 60 test instances. As can be seen from Table 4, CIG_des_asc 
indicates that the CIG used the NEH_F_asc and NEH_F_des strategies to 
generate two initial solutions, respectively. CIG_des_des utilizes the 
NEH_F_des and NEH_F_des strategies to generate two initial solutions. 

Fig. 3. Box plot for different d values.  

Table 4 
The ARPI values for comparison with different initialization strategies.  

ARPI CIG_des_asc CIG_des_des CIG_asc_asc 

f = 2  0.244  0.410  0.134 
f = 3  0.299  0.882  1.058 
f = 4  0.532  1.270  0.854 
f = 5  2.331  3.103  1.492 
Mean  0.851  1.416  0.884  

Fig. 4. Box plot for different initialization strategies.  

Table 5 
The ARPI values for comparison with and without neighborhood and intensifi-
cation strategies.  

ARPI CIG CIG_N_NSS CIG_N_LIS 

f = 2  0.244  1.581  3.221 
f = 3  0.299  0.675  9.823 
f = 4  0.532  2.534  12.574 
f = 5  2.331  0.533  7.531 
Mean  0.851  1.331  8.287  

Fig. 5. Box plot with and without different strategies.  
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Fig. 6. Means plots and 95% LSD confidence intervals for all compared algorithms.  
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CIG_asc_asc employed the NEH_F_asc and NEH_F_asc strategies to 
generate the initial solutions. From the results of Table 4, the CIG_de-
s_asc is superior to other algorithms. This shows that the performance of 
the proposed initialization strategy combined with NEH_F_des strategy is 
superior to other algorithms. The jobs with short and long processing 
time are selected to form a scheduling sequence, respectively, which can 
effectively reduce the impact of blocking constraints on completion 
time. Moreover, the proposed NEH_F_asc strategy not only improves the 
quality of the initial solution, but also improves the efficiency for the 
subsequent iteration. We also made a statistical test on the RPI values 
obtained from the 60 instances. As shown in Fig. 4, the box plot shows 
different levels of initialization strategies performance. Among them, 
the initialization strategy with NEH_F_asc strategy is effective. Consid-
ering the mean values obtained in Table 4 and Fig. 4, we finally choose 
the CIG_des_asc as the initialization strategy. 

5.5. Performances of neighborhood search and local intensification 
strategies 

The test of the CIG_N_NSS and CIG_N_LIS is based on the NEH_F_asc 
combined with the NEH_F_des strategies to execute. CIG_N_NSS is the CIG 
without the proposed neighborhood search strategy. CIG_N_LIS is the 
CIG without the local intensification strategy. From the experimental 
results, in each factory (as shown in Table 5 and Fig. 5), in terms of the 
ARPI value and range of box interval, the CIG with the above two 
strategies obtained the minimum mean value. In addition, Fig. 5 shows 
that the significance level of CIG algorithm is the best. The reason may 
be that the neighborhood search strategy improves the algorithm’s 
global search ability and the local intensification strategy enhances the 
local exploitation ability. Without this strategy, the quality of the al-
gorithm will decline sharply. It is possible that the proposed strategy 
makes a more in-depth exploration in sequence sorting, and many un-
known neighborhoods are found, which improve the diversity of solu-
tions. Thus, the blocking constraints of the job sequence are effectively 
reduced by the proposed strategies. 

5.6. Performance comparison of all the compared algorithms 

To comprehensively and intuitively evaluate the performance of the 
CIG algorithm, we compare the CIG against the state-of-the-art 

metaheuristics for related problems, the DDE algorithm (Zhang et al., 
2018), the evolutionary algorithm (EA) (Fernandez-Viagas et al., 2018), 
the modeling and multi-neighborhood iterated greedy algorithm 
(MN_IG) (Shao et al., 2020), the IG algorithm (Ruiz et al., 2019), and the 
DPSO algorithm (Marichelvam et al., 2019). For the DHHFSP problem, 
there are two key issues to be solved. One is how to allocate jobs to 
appropriate factories and the other is how to generate the scheduling 
sequence of operations on machines with minimal makespan. DPSO has 
not been developed for HFSP without distributed environment. How-
ever, DPSO can deal with the second issue of DHHFSP. Thus, for the sake 
of fairness, DPSO adopts the same allocation strategy as the CIG algo-
rithm to solve the first issue of DHHFSP. Specifically, DPSO first adopts 
the allocation strategy based on NEH_ F_ des and NEH_ F_ asc considered 
in this paper to initialize the population. Then, for each factory, the 
implementation strategy is employed according to the original litera-
ture. Thus, it is reasonable when DPSO can achieve the good perfor-
mance. The reason may be that the evolutionary strategies are effective 
when optimizing the solutions of each factory. 

Besides the DPSO algorithm, all the compared algorithms, i.e., DDE, 
EA, IG, and MN_IG, are developed for the distributed scheduling prob-
lems. For MN_IG, it used the NEH_F_asc initialization strategy to allocate 
the jobs to different factories. After allocating the factories, the sequence 
in each factory is adjusted according to the strategy proposed in the 
original literature. For EA, DDE, IG, they allocate jobs to factories ac-
cording to the strategy of the original paper. In the code, we separate the 
problem from the algorithm. When the factory problem is finished, the 
subsequent operations of each algorithm and the problem will not 
interfere with each other. Thus, it is reasonable to select the above 
compared algorithms. 

To better show the performance of all the algorithms, we set the 
parameters used in the compared algorithms to the same value as in the 
original literature. To make fair comparisons, we run all the compared 
algorithms under the same environment and adopt the same maximal 
elapsed CPU time, Timelimit, as the termination criterion. In addition, 
the Means and 95% Least Significant Difference (LSD) confidence in-
tervals (verify whether there is a significant difference between the two 
values) for all test algorithms are illustrated in Fig. 6. 

Tables 6 and 7 show the RPI values and best target values of all al-
gorithms, in which the minimum values of the results are marked in 
bold. We can find that the number of the minimum best values produced 

Fig. 6. (continued). 
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by the CIG algorithm are 58 out of 60 test instances in Table 6 and 56 out 
of 60 test instances in Table 7. The DDE, EA, MN_IG, IG, and DPSO al-
gorithms can get 0, 1, 1, 1, 0 best values, respectively, and the number of 
all these algorithms is significantly less than that of the CIG algorithm. 
For RPI values, the CIG algorithm obtains the maximum number of the 
best results, followed by IG, EA, DPSO, MN_IG and DDE algorithms. 
About the mean value of instances in each factory, the proposed 

algorithm can get 6/6 minimum best values and 6/6 minimum best RPI 
values in Tables 6 and 7. EA, DDE, MN_IG, and IG algorithms obtain 0/6 
minimum best values and 0/6 minimum best RPI values, respectively. 
From the overall performance shown in Tables 6 and 7, the proposed 
CIG algorithm is better than other comparison algorithms. This indicates 
that the proposed strategies are effective in solving DHHFSP with 
blocking constraints. 

Table 6 
Experimental results of the best and RPI values for all test algorithms whenω = 5.  

f n × s CIG DDE(2018) EA(2018) IG(2019) DPSO(2019) MN_IG(2020) 

best RPI best RPI best RPI best RPI best RPI best RPI  

100 × 5 2759 0.32 2928 6.13 2791 2.02 2814 3.42 2772 1.82 2932 6.27  
100 × 8 2682 1.15 3348 24.83 3050 15.72 3035 15.53 3030 15.27 3383 26.14  
100 × 10 2858 1.6 3329 16.48 3101 9.41 3104 10.52 3081 9.83 2996 4.83  
200 × 5 5113 0.22 5176 1.23 5138 0.9 5119 0.33 5128 0.73 5235 2.39  
200 × 8 5778 0.26 6166 6.8 5870 2.51 6079 5.66 5806 1.16 5855 1.33  
200 × 10 4970 0.34 5280 8.59 5107 3.88 5261 6.81 5024 2.12 5037 1.35  
300 × 5 4402 2.52 5199 18.11 5078 15.88 4999 14.56 5062 16.76 5341 21.33 

f = 2 300 × 8 7538 0.35 7764 4.7 7603 1.7 7840 4.03 7562 0.62 7694 2.07  
300 × 10 7732 1.02 8571 10.85 8158 6.52 8119 5.92 8066 5.26 8513 10.1  
400 × 5 10,152 0.32 10,329 2.21 10,203 0.94 10,318 1.91 10,168 0.34 10,152 0  
400 × 8 9871 0.83 10,351 4.86 10,296 4.99 10,153 3.37 10,121 3.21 10,739 8.79  
400 × 10 10,788 1.85 13,564 25.73 13,164 23.78 12,842 20.14 12,561 17.98 13,211 22.46  
500 × 5 6335 1.17 7035 11.05 6963 10.29 6866 8.96 7018 11.02 7234 14.19  
500 × 8 6832 3.26 8112 18.74 8040 18.07 7930 17.41 8087 18.7 8441 23.55  
500 × 10 7539 4 9098 20.68 8988 19.73 8731 16.61 8869 19.19 9308 23.46  
mean 6356.6 1.28 7083.33 12.07 6903.33 9.09 6880.67 9.01 6823.67 8.27 7071.4 11.22  
100 × 5 1801 2.79 2039 13.21 1900 7.77 2065 17.04 1874 6.22 1974 9.61  
100 × 8 1828 1.79 2210 20.9 1938 7.54 1976 10.67 1882 4.57 2080 13.79  
100 × 10 2394 3.3 2924 22.14 2745 16.45 2739 17.21 2728 16.57 2945 23.02  
200 × 5 1917 4.1 2273 18.57 2158 14.31 2109 11.86 2151 13.57 2243 17.01  
200 × 8 3701 5.53 4521 22.16 4307 18.15 4207 15.44 4216 16.05 4712 27.32  
200 × 10 4276 4.28 5256 22.92 5091 20.26 5016 18.59 4949 17.27 5231 22.33  
300 × 5 5766 17.6 7118 23.45 6984 21.69 6731 18.29 6865 20.34 7224 25.29 

f = 3 300 × 8 5460 2.96 5782 5.9 5555 2.57 5608 3.17 5519 2 5693 4.27  
300 × 10 5754 15.63 6742 17.17 6724 17.63 6536 15.35 6533 15.17 7140 24.09  
400 × 5 7353 17.4 8721 18.6 8745 19.33 8391 15.74 8658 18.43 9174 24.77  
400 × 8 6899 3.28 7046 2.13 6999 1.81 6952 1.27 6981 1.79 7205 4.44  
400 × 10 7182 2.93 7532 6.38 7119 1.19 7357 4.48 7125 0.67 7382 3.69  
500 × 5 8689 2.43 9010 3.69 8848 2.48 8777 1.92 8749 1.46 9040 4.04  
500 × 8 8500 3.23 9096 7.01 8836 4.63 8719 3.71 8763 3.82 9085 6.88  
500 × 10 8988 5.77 9438 5.01 9345 4.28 9308 4.4 9223 3.4 9580 6.59  
mean 5367.2 6.2 5980.53 13.95 5819.6 10.67 5766.07 10.61 5747.73 9.42 6047.2 14.47  
100 × 5 1290 2.48 1444 11.94 1336 6.99 1380 8.06 1322 4.37 1380 6.98  
100 × 8 1550 2 1849 19.29 1649 7.88 1618 7.04 1603 5.26 1709 10.26  
100 × 10 1714 4.8 2021 17.91 1891 11.86 1824 8.81 1900 13.45 2077 21.18  
200 × 5 1419 9.51 1668 17.55 1620 15.27 1591 13.5 1650 18.33 1669 17.62  
200 × 8 1484 8.28 1835 23.65 1660 13.73 1631 11.73 1659 13.35 1729 16.51  
200 × 10 2800 4.08 2968 6 2884 4.22 2847 2.62 2858 3.03 3013 7.61  
300 × 5 4104 3.58 4075 0.3 4074 0.29 4063 0.35 4107 1.08 4230 4.11 

f = 4 300 × 8 3980 5.36 4204 5.63 4136 4.82 4084 3.26 4097 4.92 4379 10.03  
300 × 10 4324 3.61 4521 4.8 4332 1.85 4314 0.61 4330 1.33 4465 3.5  
400 × 5 5095 2.17 5189 1.84 5165 1.69 5133 1.09 5161 1.59 5191 1.88  
400 × 8 5774 12.23 6990 21.06 6782 18.7 6656 17 6765 18.95 7255 25.65  
400 × 10 5220 5.07 5657 8.37 5541 7.04 5468 5.68 5498 6.12 5778 10.69  
500 × 5 6342 1.92 6386 0.69 6372 0.56 6382 0.83 6386 0.99 6479 2.16  
500 × 8 2816 9.38 3365 19.5 3307 18.01 3243 15.83 3296 17.87 3283 16.58  
500 × 10 6508 0.67 6915 6.25 6634 2.38 6842 5.21 6557 1.29 6561 0.81  
mean 3628 5.01 3939.13 10.99 3825.53 7.69 3805.07 6.77 3812.6 7.46 3946.53 10.37  
100 × 5 1173 2.63 1359 15.86 1228 7.74 1232 9.68 1208 4.61 1282 9.29  
100 × 8 1244 1.7 1521 22.27 1308 8.43 1399 14.85 1286 4.97 1338 7.56  
100 × 10 1400 3.93 1646 17.57 1565 13.11 1458 7.69 1562 13.6 1714 22.43  
200 × 5 2418 15.16 2784 15.14 2715 13.25 2705 14.76 2794 15.55 2984 23.41  
200 × 8 1406 12.94 1525 8.46 1516 8.39 1448 5.34 1525 8.46 1655 17.71  
200 × 10 1343 16.76 1619 20.55 1566 18.59 1472 10.77 1539 16.76 1617 20.4  
300 × 5 1668 8.35 1911 14.57 1857 12.84 1823 10.39 1847 12.07 1908 14.39 

f = 5 300 × 8 3355 5.39 3671 9.42 3552 6.61 3547 7.4 3569 7.28 3746 11.65  
300 × 10 3185 3.1 3538 11.08 3337 5.91 3378 6.88 3288 4.53 3384 6.25  
400 × 5 2049 7.73 2403 17.28 2338 15 2305 13.28 2360 16.15 2345 14.45  
400 × 8 4506 4.77 4555 1.09 4541 1.02 4512 0.91 4622 2.57 4937 9.57  
400 × 10 5078 15.76 6047 19.08 5808 15.09 5676 12.79 5945 18.26 6129 20.7  
500 × 5 5023 0.58 5258 4.68 5072 1.52 5212 4.06 5042 0.86 5078 1.09  
500 × 8 5767 20.53 7068 22.56 6969 21.72 6932 21 7193 26.68 7345 27.36  
500 × 10 5927 12.15 6737 13.67 6530 11.66 6443 10.41 6738 14.66 6939 17.07  
mean 3036.13 8.77 3442.8 14.22 3326.8 10.72 3302.8 10.01 3367.87 11.13 3493.4 14.89  
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To further evaluate the performance of the proposed algorithm, a 
multifactor ANOVA analysis is utilized to illustrate whether the results 
obtained by CIG are indeed different from the compared algorithms. The 
type of the algorithms and jobs, factories, and stages are considered as 
the factors. Fig. 6 shows that the Means plots and 95% least-significant 
difference (LSD) confidence intervals for all compared algorithms 
whenω = 5. Fig. 6(a) illustrates the means plots of the algorithms. Fig. 6 

(b) shows the interactions of the algorithms and the number of factories 
(f). Fig. 6(c) gives the interactions of the algorithms and the number of 
the stages and jobs (s and n). In addition, to further illustrate the dif-
ference among these algorithms, we randomly select six examples of 
different scales to draw the box plots. The details are shown in Fig. 7 (a- 
f). 

To enrich the statistical results, we carried out the Friedman test on 

Table 7 
Experimental results of the best and RPI values for all test algorithms whenω = 10.  

f n × s CIG DDE(2018) EA(2018) IG(2019) DPSO(2019) MN_IG(2020) 

best RPI best RPI best RPI best RPI best RPI best RPI  

100 × 5 2762 0.11 2928 6.01 2789 1.44 2806 3.15 2772 1.37 2932  6.15  
100 × 8 2644 0.42 2838 7.34 2678 2.66 2690 3.82 2654 1.44 2752  4.08  
100 × 10 2684 0.59 3062 16.83 2768 4.73 2841 8.98 2729 3.22 2819  5.03  
200 × 5 1765 2.47 2033 15.18 1952 11.88 1968 12.86 1995 14.71 2163  22.55  
200 × 8 2984 2.02 3553 19.07 3346 14 3352 13.84 3402 15.63 3665  22.82  
200 × 10 5301 1.99 6821 28.67 6207 18.67 6250 20.62 6149 17.56 6476  22.17  
300 × 5 7617 0.29 8148 6.97 7853 3.66 7851 4 7786 2.58 8076  6.03 

f = 2 300 × 8 7607 0.7 8254 8.51 7911 4.76 7921 4.78 7767 2.94 8178  7.51  
300 × 10 8124 1.06 8577 5.88 8289 2.79 8352 3.27 8184 1.43 8342  2.68  
400 × 5 10,277 0.91 10,825 5.33 10,698 4.54 10,634 4.18 10,499 3.11 10,986  6.9  
400 × 8 9959 0.72 10,125 1.67 10,011 1.01 10,004 1.06 9977 0.69 10,139  1.81  
400 × 10 9975 1.16 10,178 2.04 10,106 1.61 10,060 1.27 10,027 0.86 10,176  2.02  
500 × 5 12,498 0.48 13,156 5.26 12,872 3.51 12,813 3.41 12,663 1.8 13,045  4.38  
500 × 8 12,995 2.48 16,323 25.61 15,906 22.91 15,465 20.28 15,296 18.8 16,846  29.63  
500 × 10 13,391 2.26 16,515 23.33 16,350 22.91 15,870 19.5 15,588 18.06 17,011  27.03  
mean 7372.2 1.18 8222.4 11.85 7982.4 8.07 7925.13 8.33 7832.53 6.95 8240.4  11.39  
100 × 5 1746 1.38 1955 11.97 1792 3.66 1855 6.84 1760 1.96 1816  4.01  
100 × 8 1834 2.07 2125 15.87 1933 7.6 1938 7.57 1956 8.26 2106  14.83  
100 × 10 1977 1.75 2491 26 2201 13.36 2221 16.08 2212 14.33 2293  15.98  
200 × 5 3043 1.23 3247 6.7 3118 3.22 3161 4.34 3066 1.99 3112  2.27  
200 × 8 3888 3.41 4902 26.08 4607 20.36 4543 18.18 4601 20.32 4931  26.83  
200 × 10 3880 3.71 4976 28.25 4434 15.9 4368 13.85 4399 15.09 4925  26.93  
300 × 5 5419 1.72 5505 1.59 5460 1.27 5433 1.17 5484 1.56 5724  5.63 

f = 3 300 × 8 5660 3.35 5967 5.42 5781 2.53 5741 2.18 5782 3.64 6164  8.9  
300 × 10 5348 8.02 6219 16.29 6014 13.35 5878 11.47 6013 13.69 6303  17.86  
400 × 5 6737 2.29 6862 1.86 6786 1.14 6796 1.25 6761 0.81 6844  1.59  
400 × 8 7651 14.6 9523 24.47 9319 22.61 9027 18.8 9126 21.6 9603  25.51  
400 × 10 4161 14.4 4915 18.12 4901 18.42 4841 17 4915 18.12 5287  27.06  
500 × 5 8585 1.31 8590 0.25 8588 0.24 8569 0.25 8610 0.82 8652  0.97  
500 × 8 8239 1.78 8436 2.39 8338 1.85 8347 1.57 8310 1.28 8459  2.67  
500 × 10 8421 2.85 8692 3.22 8566 2.32 8555 2.13 8510 1.81 8745  3.85  
mean 5105.93 4.26 5627 12.56 5455.87 8.52 5418.2 8.18 5433.67 8.35 5664.27  12.33  
100 × 5 1352 3.49 1621 19.9 1431 8.26 1428 8.14 1441 8.89 1563  15.61  
100 × 8 1585 2.51 1848 16.59 1656 6.96 1610 4.34 1675 7.88 1738  9.65  
100 × 10 1834 2.29 2214 20.72 2044 13.3 1978 11.27 2032 13.28 2221  21.1  
200 × 5 2521 1.82 2604 3.29 2562 2.39 2559 2.31 2531 1.45 2590  2.74  
200 × 8 2884 9.88 3485 20.84 3305 16.61 3219 13.98 3331 16.83 3655  26.73  
200 × 10 1684 6.36 2099 24.64 1930 15.91 1857 12.71 1939 16.46 2049  21.67  
300 × 5 1985 6.12 2202 10.93 2134 8.47 2058 4.88 2143 9.31 2210  11.34 

f = 4 300 × 8 2109 7.76 2475 17.35 2334 12.77 2342 12.08 2324 12.28 2420  14.75  
300 × 10 4189 12.43 5190 23.9 4828 16.65 4721 14.39 4794 16.15 5277  25.97  
400 × 5 2843 14.18 3425 20.47 3344 18.56 3199 13.55 3363 19.57 3352  17.9  
400 × 8 5280 5.45 5612 6.29 5475 4.63 5451 3.93 5502 5.56 5610  6.25  
400 × 10 5106 1.11 5507 7.85 5220 2.98 5353 5.6 5144 1.55 5251  2.84  
500 × 5 6407 1.43 6660 3.95 6469 1.39 6653 4.01 6428 0.8 6536  2.01  
500 × 8 6758 5.22 7002 3.61 6790 1.56 6758 0.88 6816 1.91 7061  4.48  
500 × 10 7160 17.11 8385 17.11 8098 13.92 8165 15.57 8171 15.83 8651  20.82  
mean 3579.8 6.48 4021.93 14.5 3841.33 9.63 3823.4 8.51 3842.27 9.85 4012.27  13.59  
100 × 5 1013 3.95 1135 12.04 1059 7.49 1037 4.78 1045 4.92 1156  14.12  
100 × 8 1395 4.7 1734 24.3 1524 11.6 1553 17.6 1524 11.57 1676  20.14  
100 × 10 1230 4.59 1486 20.81 1348 12.15 1315 9.46 1324 10.53 1439  16.99  
200 × 5 1177 7.37 1339 13.76 1294 11.02 1250 7.47 1299 11.95 1417  20.39  
200 × 8 2409 6.47 2809 16.6 2581 8.66 2548 9.4 2583 10.03 2679  11.21  
200 × 10 2339 3.85 2666 13.98 2437 6.02 2472 7.21 2401 4 2555  9.23  
300 × 5 3492 5 3643 6.93 3423 1.58 3407 1.35 3456 2.77 3614  6.08 

f = 5 300 × 8 3172 3.15 3518 10.98 3170 2.09 3386 9.85 3240 3.34 3264  2.97  
300 × 10 3508 6.15 3838 9.41 3642 5.08 3565 2.61 3664 6.28 3751  6.93  
400 × 5 4976 17.49 5655 13.65 5611 13.02 5579 13.3 5780 16.16 6122  23.03  
400 × 8 4275 1.85 4571 7.02 4271 1.15 4494 7.15 4331 2.4 4387  2.72  
400 × 10 4646 19.55 5528 18.98 5382 16.76 5208 14.46 5376 17.71 5737  23.48  
500 × 5 5332 5.82 5484 2.85 5442 2.28 5444 3.22 5655 6.65 5786  8.51  
500 × 8 2767 7.4 3115 12.58 2986 9.4 2951 7.42 3004 9.39 3103  12.14  
500 × 10 5275 6.54 5541 5.04 5473 4.32 5399 3.21 5489 5.07 5762  9.23  
mean 3133.73 6.93 3470.8 12.6 3309.53 7.51 3307.2 7.9 3344.73 8.18 3496.53  12.48  
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the experimental results. The Friedman test is a kind of non-parametric 
test, and the first step is to assume that all algorithms are null hypoth-
eses. Judge whether the result rejects the hypothesis. If it rejects, it in-
dicates that the two algorithms have statistically significant differences; 
otherwise, there is no significant difference between any algorithms. 
The Friedman test is illustrated in Table 8. It contains the following el-
ements: the performance ranks (Ranks), the test number (N), the mean 
value (Mean), the standard deviation (Std. Deviation), minimum and 
maximum value (Min and Max). 

From Fig. 6(a), it is clear that the proposed CIG algorithm is signif-
icantly different from all of the compared algorithms. The CIG is the 

Fig. 7. The box plots of all compared algorithms.  

Table 8 
Experimental results of the Friedman test (α = 0.05).  

Algorithms Ranks N Mean Std. Deviation Min Max 

CIG  1.05 150  1.91  1.84  0.00  14.66 
DDE  5.47 150  16.70  5.95  6.13  24.83 
EA  3.13 150  9.31  4.70  1.16  18.38 
MN_IG  4.64 150  12.77  7.66  4.83  26.14 
IG  4.13 150  11.47  4.94  1.99  20.32 
DPSO  2.58 150  8.17  5.27  0.47  18.42 
p-value  0.00       
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best; IG, DPSO, EA, DDE, and MN_IG follow sequentially. They all show 
better performance in solving the DHHFSP with blocking constraints. In 
Fig. 6(b), with the increase of the factories, the performance gap be-
tween the proposed algorithm and other algorithms is gradually nar-
rowing. However, there are still some regions that are significantly 
different from the comparison algorithms. In terms of the stages and 
jobs, as shown in Fig. 6(c), the proposed algorithm is significantly 
different from other comparison algorithms. In the Friedman test, it can 
be observed that it has the best performance for comparison with the 
minimum ranks of 1.05. Moreover, compared to other algorithms, the 
Std. Deviation, Mean, Min, and Max value of the CIG are all minimum. 
The p-value calculated from the experimental results is 0.00. It shows the 
significant differences among these algorithms. In addition, it also can 
be seen from Fig. 7 (a-f) that makespan in the box plot of the CIG al-
gorithm is smaller than those by the DDE, EA, MN_IG, IG, and DPSO. In 6 
randomly selected examples, the proposed algorithm shows significant 
differences from other algorithms. On the whole view, the CIG algorithm 
performs best. 

The reason for the CIG algorithm’s superior performance can be 
explained as follows: Firstly, the proposed NEH_F_asc strategy can 
improve the product productivity by prioritizing the production of jobs 
with short processing time. Blocking conditions for many small jobs are 
effectively reduced. Secondly, the neighborhood search strategy can 
quickly adjust the job sequence to search for a better solution and in-
crease the global search ability. Thirdly, the local intensification strat-
egy enhances the local search capability of the algorithm. The solution 
of a single factory can be explored more deeply by this strategy. 
Furthermore, the cross-factory and inner-factory search strategies can 
maintain a balance between exploration and exploitation. After 
completing one iteration, the quality of the solution will be further 
improved. To sum up, according to the experimental results of all al-
gorithms, the proposed CIG algorithm is the most suitable to solve the 
DHHFSP with blocking constraints for minimizing the makespan. 

6. Conclusions 

This paper presents an effective CIG algorithm to solve the DHHFSP 
with blocking constraints for minimizing the makespan. To the best of 
our knowledge, this is the first work that solves such a meaningful 
problem. For solving this problem, a mathematical model of the 
DHHFSP with blocking constraints is developed. Next, we design the 
NEH_F_asc initialization strategy combined with the NEH_F_des to reduce 
the impact of blocking as much as possible in the early stage of the al-
gorithm. Later, a neighborhood search strategy with two search opera-
tors is presented to improve the global search ability of the CIG 
algorithm and quickly adjust the job sequence in different factories. 
Moreover, the local intensification strategy based on the swap operation 
is utilized to explore the neighborhood of the solution further and 
improve the overall quality of the solution. However, the CIG algorithm 
proposed in this paper does not consider the adjustment of the number 
of jobs in the factory after the factory is allocated to the jobs. This is a 
limitation of this algorithm. In later research, we will consider this factor 
and continue to improve CIG algorithm. 

In the future, many flow shop scheduling problems with heteroge-
neous factories and blocking constraints can be studied. Other con-
straints, such as the machine breakdowns, the setup time, the job 
assembly, etc., can be considered. In addition, the multiobjective 
DHHFSP is an interesting research topic. Furthermore, we would like to 
improve the performance of the CIG algorithm. It may be a good choice 
to introduce reinforcement learning or deep learning into the algorithm. 
According to the real-world production needs, we may consider 
applying the CIG algorithm to the real production shop scheduling 
problem. 
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