
Applied Soft Computing 129 (2022) 109502

D
a

b

c

d

m
M
f
P
e
d
h
s
f
t

(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

An effective iterative greedy algorithm for distributed blocking
flowshop scheduling problemwith balanced energy costs criterion
Xue Han a, Yuyan Han a,∗, Biao Zhang a,∗, Haoxiang Qin a, Junqing Li b, Yiping Liu c,
unwei Gong d

School of Computer Science, Liaocheng University, Liaocheng, 252000, China
School of Computer Science, Shandong Normal University, Jinan, 252000, China
The College of Computer Science and Electronic Engineering, Hunan University, 410082, China
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

a r t i c l e i n f o

Article history:
Received 1 December 2021
Received in revised form 2 August 2022
Accepted 9 August 2022
Available online 20 August 2022

Keywords:
Distributed flowshop scheduling problem
Blocking
Energy consumption cost
Local search algorithm
Variable neighborhood search

a b s t r a c t

With the increase in production levels, a pattern of industrial production has shifted from a single
factory to multiple factories, resulting in a distributed production model. The distributed flowshop
scheduling problem (DPFSP) is of great research significance as a frequent pattern in real production
activities. In this paper, according to real-world scenarios, we have added blocking constraints and
sequence-dependent setup times (SDST) to the DFSP and proposed a distributed blocking flowshop
scheduling problem with sequence-dependent setup times (DBFSP_SDST). In a distributed environ-
ment, the allocation of resources and utilization have become an urgent problem to be solved. In
addition, scheduling problems related to resource conservation have also attracted increasing attention.
Therefore, we study DBFSP_SDST and consider minimizing the energy consumption cost of the critical
factory (critical factory is the factory with maximum energy consumption cost) under resource balance.
To tackle this problem, an effective iterated greedy algorithm based on a learning-based variable
neighborhood search algorithm (VNIG) is proposed. In VNIG, an efficient construction heuristic is
well designed. Two different local searches based on the characteristics of the proposed problem are
developed to enhance the local exploitation by neighborhood searching. A learning-based selection
variable neighborhood search strategy is designed to avoid the solution trapping in local optima.
By conducting extensive simulation experiments, the proposed VNIG shows superior performance
compared with artificial chemical reaction optimization (CRO, 2017), the discrete artificial bee colony
algorithm (DABC, 2018), the iterative greedy algorithm with a variable neighborhood search scheme
(IGR, 2021), and the evolution strategy approach (ES, 2022).

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid growth of manufacturing, the production
odel of multiple factory operations has become the norm.
oreover, the emergence of globalization has also prompted

actories to show multiregional, multimode characteristics [1].
roduct processing is no longer limited to a factory but sev-
ral factories, which makes processing much more efficient. The
istributed permutation flowshop scheduling problem (DPFSP)
as become the choice of many enterprises due to its simple
tructure and easy operation and has attracted much attention
rom scholars [2]. The characteristics of the DPFSP are as follows:
here are n jobs to be processed in f identical factories, in which

∗ Corresponding authors.
E-mail addresses: hanyuyan@lcu-cs.com (Y. Han), zhangbiao@lcu-cs.com

B. Zhang).
ttps://doi.org/10.1016/j.asoc.2022.109502
568-4946/© 2022 Elsevier B.V. All rights reserved.
m uncorrelated machines exist in each factory. Once a job is
assigned to a factory, it cannot be assigned to another factory.
The job must be processed on all machines of the factory. Based
on the above characteristics, there are two key subproblems in
the DPFSP to be solved: how to assign jobs to multiple factories
and how to determine the scheduling sequence in each factory.

In the traditional DPFSP, factories are assumed to have in-
finite buffers. However, in real production activities, there are
sometimes no buffers between neighboring machines due to the
limitations of factory storage devices [3]. In this situation, a job
must wait on the current machine until the next machine is
available, which causes the blocking of jobs. For example, in
the chemical industry, partially processed jobs (i.e., physical or
chemical materials) are held in machines because there is no
intermediate storage. In the case of the iron and steel indus-
try, the blocking of ingot in the soaking pit will increase the

extra consumption of energy since the blocked ingot requires a

https://doi.org/10.1016/j.asoc.2022.109502
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109502&domain=pdf
mailto:hanyuyan@lcu-cs.com
mailto:zhangbiao@lcu-cs.com
https://doi.org/10.1016/j.asoc.2022.109502

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

h
c
d
c
j
a
w
a
p
c
t
c
o
o
c
v
w

s
s
f
e
t
o
e
t
t
o
e
A
c
i
r
m
t
B
o
t

e
e
p
c
r

g
s
a
s
D
r
t
a

s
s
e
a
t
p

(
r
i
s

igh temperature [3]. In this paper, the blocking constraint is
onsidered in the DPFSP, resulting in a new problem, i.e., the
istributed blocking flowshop scheduling problem (DBFSP). Ex-
ept for the above blocking constraint, the setup time of adjacent
obs is also an important factor in real-world scenarios [4], such
s fixtures or tools of machines that may need to be changed
hen different jobs are processed on the same machine. The
bovementioned setup time is related to the operation being
rocessed and the previous operation in the sequence, generally
alled sequence-dependent setup times (SDST) [5,6]. According to
he literature [7,8], both blocking constraints and SDST have been
onsidered simultaneously in PFSP, and it is evident that the study
f these two constraints on the flowshop scheduling problem is
f practical importance. Therefore, based on the above analysis,
ombined with the distributed production environment, we in-
estigate the distributed blocking flowshop scheduling problem
ith sequence-dependent setup time (DBFSP_SDST).
In the literature, most research on the above distributed flow-

hop scheduling problems only considers economic indicators,
uch as makespan, tardiness time or earliness time, and relatively
ew focus on environmental protection or energy consumption or
nergy consumption cost indicators from a sustainable manufac-
uring point of view. In practical production, idle machines, setup
f machines, and blocking of jobs in each factory often lead to
nergy consumption csots [3]. For distributed production models,
he factories may be located in different regions, which leads to
he imbalanced reginons energy consumption csots. In the report
f the Academician Conference of the Chinese Academy of Sci-
nces in 2021, professor Zhongli Ding, Academician of the Chinese
cademy of Sciences, pointed out that if different enterprises in a
ertain industry cannot coordinate and progress together, it will
nevitably lead to cost savings for ‘‘doing not act as an enterprise’’,
esulting in the phenomenon of ‘‘bad money drives out good
oney’’. Furthermore, efforts have also be made on minimizing

he total energy consumption costs by many scholars [9,10].
ased on the above analysis, we find that it is more reasonable to
ptimize the total energy consumption costs of the critical factory
han the total energy consumption of the critical factory.

Thus, it is necessary to expend much effort to ensure the
nergy costs balance between different regions and reduce the
nergy consumption costs of each factory. In view of this, in this
aper, the objective is to minimize the total energy consumption
osts of each critical factory by assigning jobs to the factories and
easonably scheduling sequence in each factory.

For flowshop scheduling problems, the iterated greedy al-
orithm (IG) shows great performance [11,12]. Compared with
ome swarm intelligence algorithms, IG has the characteristics of
simple frame, easy operations, and a powerful neighborhood

earch capability for deeper mining of solutions [13]. For the
BFSP_SDST with balanced energy costs criterion, there is no
elevant literature to propose corresponding algorithms to solve
his problem. Therefore, an expanded algorithm based on the IG
lgorithm is proposed in this paper.
This study has the following two novelties.
Based on the scheduling problem subject to blocking con-

traints. This study formulates a distributed blocking flowshop
cheduling problem with setup times that optimize the balanced
nergy costs criterion for the first time. The formulation of the
bove scheduling problem can better reflect real-world applica-
ions, thus, compared to those in previous work, that have more
ractical significance.
Following that, an IG algorithm with variable neighborhoods

VNIG) is designed to solve the DBFSP_SDST. The proposed algo-
ithm has the following trifold features. The first is that the initial-
zation solution is obtained by a variant of MM and NEH2_en. The

econd is that three different local search strategies are proposed

2

based on the properties of DBFSP_SDST with balanced energy
costs criterion. Third, a variable neighborhood search strategy is
added to avoid becoming trapped in local optima. The perfor-
mances of the presented initialization, three local search, and
variable neighborhood search strategies are empirically evalu-
ated. The experimental results demonstrate that the proposed
strategies can effectively tackle DBFSP_SDST with balanced en-
ergy costs criterion by obtaining a good scheduling sequence.

The remainder of this paper is organized as follows. Section 2
describes the literature related to energy-balance DBFSP_SDST.
In Section 3, we explain and give examples of DBFSP_SDST with
balanced energy costs criterion. The algorithms and innovations
proposed in this paper are listed in Section 4. Section 5 gives the
experimental results and analysis of the algorithms. In the last
section, we conclude the paper and give an outlook on future
research directions.

2. Literature review

Compared with the research on the classical DPFSP, little re-
search has been done on the DFSP_SDST with blocking constraints
and balanced energy costs criterion. Most studies have focused
on optimizing the DPFSP or DPFSP_SDST with the makespan
criterion. The following first reviews the DPFSP and then the
DPFSP_SDST. Next, the blocking constraint in the flowshop
scheduling problems is described. Finally, the characteristics of
our addressed problem are presented.

The DPFSP has emerged in response to globalization and the
continuous development of the manufacturing industry. The tar-
get of studying DPFSP is to save production materials and improve
production efficiency. Since the emergence of the DPFSP, many
scholars have developed a series of innovative algorithms to
solve it. Heuristics and metaheuristics are studied by Hatami and
Ruiz [14]. Naderi and Ruiz proposed a scatter search (SS) method
to minimize makespan [15]. For the same objective, Bargaoui
et al. designed an effectively improved chemical reaction opti-
mization algorithm (CRO) [16]. Fernandez-Viagas et al. employed
a bounded-search iterated greedy algorithm based on the specific
structure of the DPFSP [17]. Ruiz and Pan proposed an improved
iterative greedy algorithm that showed excellent performance
in solving the DPFSP [18]. In addition to minimizing makespan,
scholars have also studied the DPFSP with other objectives. Meng
and Pan proposed three heuristics to optimize the customer satis-
faction objective, i.e., the neighborhood descent, the artificial bee
colony, and the iterative greedy methods [19]. For the DPFSP with
the total flow time criterion, Fernandez-Viagas et al. proposed an
iterative improvement algorithm [20]. Subsequently, Pan et al.
designed three constructive heuristics and four metaheuristics
based on the characteristics of the problem [21]. Recently, Zhang
et al. proposed an innovative three-dimensional matrix-cube-
based estimation of distribution algorithm (MCEDA) [22].

In real production activities of the DPFSP, many constraints
limit the production of products, e.g., sequence-dependent setup
time and blocking constraints. Regarding the sequence-
dependent setup time, since the machine may generate oper-
ations with replacement parts, maintenance, etc., before pro-
cessing a job, some extra time will be generated. The setup
time is related to the job being machined as well as to the
previous one. To solve this problem, Parthasarathy et al. [23]
proposed an experimental evaluation of heuristics for scheduling
in a real-life flowshop with sequence-dependent setup times
(SDST) of jobs. Following that, to optimize the problems with
SDST, some excellent algorithms, such as ant colony optimization
techniques [24], variable domain constructive heuristics [25],
constructive heuristics [26], and enhanced migratory bird opti-
mization algorithms [27], have been proposed. Recently, Huang

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

t
d
b
m
d
t
e
d
b
o
a
m
D
f
f
a
f
o
L
i

e
f
p
4
p
W
(
(
a
(
G
t
t
v
f
b

c
t
t
t
a
i
e
T

Table 1
Review of the works on DPFSP.
Authors Setting Objective(Minimizing) Solution approach

Bargaoui et al. [16] DPFSP Makespan Improved artificial chemical reaction optimization
Ruiz et al. [18] DPFSP Makespan Effective Iterated Greedy methods
Huang et al. [28] DPFSP Setup times Constraint and makespan An iterated greedy algorithm with a restart scheme
Zhao et al. [32] DBFSP Makespan An ensemble discrete differential evolution algorithm

Chen et al. [33] DBFSP Makespan An iterated greedy algorithm, an effective initialization
method, and an enhanced construction method

Wang et al. [34] DPFSP Energy- Efficient and makespan A knowledge-based cooperative algorithm

Rossi et al. [35] Mixed No-idle DPFSP Sequence-Dependent setup times
constraint

A novel constructive heuristic and iterated greedy
algorithms

Pan et al. [36] DPFSP Total flow time A discrete artificial bee colony algorithm

This paper DBFSP Setup times constraint and
Energy-balance

An effective iterative greedy with variable neighborhood
search strategy
et al. proposed an improved iterative greedy algorithm [28] and
an effective discrete bee colony algorithm [29] to solve the DPFSP
with SDST

The DPFSP can be classified into two categories concerning
he size of buffers (either infinite or no buffers). The former
oes not result in job blocking since it has enough intermediate
uffers to store uncompleted jobs. Here, the term ‘‘blocking’’
eans maintaining a limited capacity of in-process inventories
ue to finite intermediate buffers. Once blocking occurs, it affects
he overall production efficiency of the sequence and increases
nergy consumption. Therefore, determining job scheduling un-
er blocking constraints becomes very important. To solve the
locking constraint, many researchers have proposed intelligent
ptimization algorithms. For the DPFSP_SDST, blocking time often
rises in each factory due to no storage space between adjacent
achines. In this paper, the blocking constraint is considered in
PFSP_SDST, and a new problem, called the distributed blocking
lowshop scheduling problem with setup times (DBFSP_SDST), is
ormed. To solve the above DBFSP_SDST, Zhang et al. proposed
novel hybrid discrete differential evolution (DDE) algorithm

or the DBFSP [30]. Next, a hybrid enhanced discrete fruit fly
ptimization algorithm (HEDFOA) was proposed by Shao [31].
ater, an ensemble discrete differential evolution [32] and an
terated greedy (IG) algorithm [33] were proposed.

Due to the gradual emphasis on resource conservation and
nvironmental protection, research with the goal of green manu-
acturing has received increasing attention. Scholars have mostly
resented their research on energy consumption objectives [37–
2]. In recent years, for the energy-efficiency DPFSP, Wang et al.
roposed a knowledge-based cooperative algorithm (KCA) [34].
ang and Li studied the multiobjective whale swarm algorithm

MOWSA) [43]. Then, the collaborative optimization algorithm
COA) [44], the innovative 3D matrix cube distribution estimation
lgorithm (MCEDA) [22], the genetic programming hyperheuristic
GP-HH) algorithm [45], and the improved NSGAII algorithm (INS-
AII) [46] were continuously designed and proposed to minimize
he energy consumption objective in different research fields. For
he distributed models, there are differences in the level of de-
elopment between regions. To narrow the differences between
actories and improve the utilization rate of factories, the resource
alance between factories was considered for the first time.
The DBFSP_SDST with balanced energy costs criterion is first

onsidered in this paper; therefore, some literature related to
he DPFSP (see Table 1) must be described. Table 1 includes
he characteristics and the main contributions of the DPFSP. For
he DPFSP with makespan criteria, a improved iterated greedy
lgorithm [16] and CRO algorithm [18] were proposed. The work
n [28] studied the DPFSP with makespan criteria and proposed an
ffective iterated greedy algorithm with a restart scheme (IGR).
he works in [32,33] added the blocking constraint in DPFSP and
3

proposed an ensemble discrete differential evolution (EDE) algo-
rithm and an iterated greedy (IG) algorithm. In [34], Wang et al.
considered the DPFSP with energy consumption and makespan
criteria. The work in [35] addressed mixed no-idle DPFSP and
considered sequence-dependent setup times. In [36], an effective
discrete artificial bee colony algorithm is proposed to solve the
DPFSP with total flowtime minimization.

In summary, for the above literature, we found that research
on the DPFSP problem is a current hot topic. DPFSP is a frequent
pattern in real production activities and has great research signifi-
cance. However, the situation faced in real production activities is
more complex [47]. To better approach real production activities,
we consider the abovementioned constraints related to energy
consumption cost indicators in the DPFSP and propose a simple
and effective IG algorithm with a variable neighborhood (VNIG)
for solving the above DBFSP_SDST with balanced energy costs
criterion.

3. DBFSP_SDST with balanced energy costs criterion

In this section, the mathematical model of the DBFSP_SDST
with balanced energy costs criterion is described, and we assume
that there are J jobs to be scheduled in F factories that have M
machines. In addition, some restrictions may appear in the model:
(1) A job can only be processed on one machine at a time. (2)
Machines in a factory can only process one job at a time. (3)
Each job must be scheduled in process order and cannot change
the factory. (4) A job has to be blocked in the current machine
until the downstream one is available. (5) An anticipatory and
sequence-dependent job setup time is considered on each ma-
chine, and an initial setup time is needed if job j is the first job
on a machine. (6) The total energy consumption costs are the
sum of the processing energy consumption cost, setup energy
consumption cost, and standby energy consumption cost.

In this paper, the objective is to minimize the total energy con-
sumption costs of each critical factory and balance the resources
by assigning jobs to the factories and reasonably scheduling se-
quence in each factory. The calculation method and the related
notations, decision variables, objective, and constraints in the
proposed mathematical model are given below.

Notations:
F : The number of factories.
f : Index of factories, f ∈

{
1, 2, . . . , F

}
.

M: The number of machines in each factory.
m: Index of machines.
J: The number of jobs.
j, j′: Index of jobs, j, j′ ∈ {0, 1, . . . , J}, where 0 is the index of

the dummy job, which represents the start and end of the job

sequence in a factory.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

W
e

f

a
j

t

f

f

c

M

D

C

C

pj,m: Processing time of job j on machine m.
sj,j′,m: Setup time from job j to job j′ on machine m. An initial

setup time s0,j,m is needed if job j is the first job on machine m.
ECProcess

j,m : The energy consumption per unit time of machine m
when the machine processes job j.

ECSetup
j,j′,m : The energy consumption per unit time of machine m

when the machine stays in the setup state from job j to job j′.
hen machine m stays in the setup state for the first job j, its

nergy consumption per unit time is represented by ECSetup
0,j,m .

EC Idle
m : The energy consumption per unit time of machine m

when the machine stays in the idle or blocked state.
ECCf : The cost per unit of energy consumption in factory f .
h: Sufficiently large positive number.

Decision variables:
Cj,m: The completion time of job j on machine m.
Dj,m: The departure time of job j on machine m.
wj,f : Binary decision variable, 1 if job j is assigned to factory

, 0 otherwise.
xj,j′,f : Binary decision variable, 1 if both jobs j and j′ are

ssigned to factory f , and job j′ is an immediate successor of job
in factory f , 0 otherwise.
TPEf : Total energy consumption costs of all machines in fac-

ory f when they stay in the processing state.
TSEf : Total energy consumption costs of all machines in factory

when they stay in the setup state.
TIEf : Total energy consumption costs of all machines in factory

when they stay in the idle or blocked state.
EMAX: Total energy consumption costs of all machines in each

ritical factory.

Objective:

inimize (EMAX) (1)

Constraints:

w0,f = 1, ∀f ∈ {1, 2, . . . , F} (2)
F∑

f=1

wj,f = 1, ∀j ∈ {1, 2, . . . , J} (3)

J∑
j′=0,j′ ̸=j

xj,j′,f = wj,f , ∀j ∈ {1, 2, . . . , J} , ∀f ∈ {1, 2, . . . , F} (4)

J∑
j=0,j̸=j′

xj,j′,f = wj′,f , ∀j′ ∈ {1, 2 . . . , J} , ∀f ∈ {1, 2, . . . , F} (5)

J∑
j′=0

x0,j′,f = 1, ∀f ∈ {1, 2, . . . , F} (6)

J∑
j=0

xj,0,f = 1, ∀f ∈ {1, 2, . . . , F} (7)

Cj,m − pj,m ⩾ 0, ∀j ∈
{
1, 2, . . . , J

}
, ∀m ∈ {1, 2, . . . ,M} (8)

j,m ⩾ Cj,m, ∀j ∈
{
1, 2, . . . , J

}
, ∀m ∈ {1, 2, . . . ,M} (9)

Cj,m − pj,m = Dj,m−1, ∀j ∈ {1, 2, . . . , J} , ∀m ∈ {2, 3, . . . ,M} (10)

j′,m − pj′,m ⩾ Dj,m + sj,j′,m +

⎛⎝ F∑
f=1

xj,j′,f − 1

⎞⎠
· h, ∀j, j′ ∈

{
1, 2, . . . , J

}
, j ̸= j′, ∀m ∈ {1, 2, . . . ,M} (11)

j,m − pj,m ⩾ s0,j,m +

⎛⎝ F∑
x0,j,f − 1

⎞⎠

f=1

4

· h, ∀j ∈
{
1, 2, . . . , J

}
, ∀m ∈ {1, 2, . . . ,M} (12)

TPEf = ECCf ·

M∑
m=1

J∑
j=1

(
ECProcess

j,m · pj,m · wj,f
)
, ∀f ∈ {1, 2, . . . , F}

(13)

TSEf = ECCf ·

M∑
m=1

J∑
j=1

⎛⎝ J∑
j′=1,j′ ̸=j

(
ECSetup

j,j′,m · sj,j′,m · xj,j′,f
)

+ ECSetup
0,j,m · s0,j,m · x0,j,f

⎞⎠ , ∀f ∈

{1, 2, . . . , F} (14)

TIEf = ECCf ·

M∑
m=1

⎛⎝EC
Idle
m ·

⎛⎝ J∑
j=1

(
Cj,M · xj,0,f

)
−

J∑
j=1

pj,m · wj,f

−

J∑
j=1

⎛⎝ J∑
j′=1,j′ ̸=j

(
sj,j′,m · xj,j′,f

)
+ s0,j,m · x0,j,f

⎞⎠⎞⎠⎞⎠ ,

∀f ∈ {1, 2, . . . , F} (15)

EMAX ⩾ TPEf + TSEf + TIEf , ∀f ∈ {1, 2, . . . , F} (16)

Eq. (1) minimizes the energy consumption costs of each crit-
ical factory, which can balance the energy consumption costs of
each factory. Constraint (2) defines that each factory contains a
dummy job that represents the start and end of the job sequence
in a factory. Constraint (3) guarantees that each job can only
be assigned to one factory for processing. Constraints (4), (5),
(6), and (7) ensure that each job must have only one immediate
predecessor and successor. Constraint (8) enforces that the start
processing time of each job on each machine must be greater than
or equal to 0. Constraint (9) ensures that the departure time of
each job on each machine must be greater than or equal to its
completion time. Constraint (10) defines that the start processing
time of each job in a machine is equal to its departure time on
the previous machine. For job j and its immediate successor j′
on machine m in factory f , the start processing time of job j′ on
machine m is not less than the departure time of job j on machine
m plus the setup time sj,j′,m, which is ensured by constraint (11).
For the first job on machine m in factory f , the start processing
time must be greater than or equal to the initial setup time s0,j,m
and is considered by constraint (12). Constraints (13), (14), and
(15) calculate the total processing energy consumption costs of
each factory, the total setup energy consumption costs of each
factory, and the total standby energy consumption costs of each
factory, respectively. Constraint (16) defines the total energy con-
sumption costs of all machines in each critical factory. Our model
contains F job sequences, each starts from a dummy job and ends
with another dummy job and represents the job scheduling in a
factory.

To clearly understand the processing of calculating EMAX,
we give the equations of the above model to calculate EMAX
in the case of heuristics and metaheuristics. Suppose factory f
includes δf jobs that are processed according to job sequence
πf =

{
π1
f , π2

f , . . . , π
j
f , . . . , π

δf
f

}
, where π

j
f , j ∈

{
1, 2, . . . , δf

}
, is

the job included in factory f . Denote [f , j] as the job index of the
jth job to be processed in factory f . For factory f , f = 1, 2, . . . , F ,
the completion time and departure time of each job on each
machine are calculated according to Eqs. (17)–(19). The energy
consumptions costs TPEf , TSEf and TIEf of factory f are calculated
according to Eqs. (20)–(22). Eq. (23) give the expression of EMAX .
C[f ,j],0 = 0, j = 1, 2, . . . , δf (17)

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

T

E

D
j
t
o

[

s

o
f

Table 2
Processing time of each job in different machines.
Job Machine

1 2 3

1 4 3 2
2 2 7 4
3 1 2 2
4 3 1 1
5 6 9 2
6 8 4 3
7 1 2 2
8 3 1 1
9 6 9 2

C[f ,j],m =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
(
s0,[f ,j],m, C[f ,j],m−1

)
+p[f ,j],m, j = 1,m = 1, 2, . . . ,M

max
(
D[f ,j−1],m + s[f ,j−1],[f ,j],m, C[f ,j],m−1

)
+p[f ,j],m, j = 2, 3, . . . , δf ,

m = 1, 2, . . . ,M

(18)

D[f ,j],m =

⎧⎪⎨⎪⎩
max

(
C[f ,j],m, C[f ,j],m+1 − p[f ,j],m+1

)
,

j = 1, 2, . . . , δf ,m = 1, 2, . . . ,M − 1
C[f ,j],m, j = 1, 2, . . . , δf ,m = M

(19)

TPEf = ECCf ·

M∑
m=1

δf∑
j=1

(
ECProcess

[f ,j],m · p[f ,j],m
)

(20)

TSEf = ECCf ·

M∑
m=1

⎛⎝ECSetup
0,[f ,1],m · s0,[f ,1],m

+

δf∑
j=2

(
ECSetup

[f ,j−1],[f ,j],m · s[f ,j−1],[f ,j],m

)⎞⎠ (21)

IEf = ECCf ·

M∑
m=1

⎛⎝EC
Idle
m ·

⎛⎝C[f ,δf],M −

δf∑
j=1

p[f ,j],m −

⎛⎝s0,[f ,1],m

+

δf∑
j=2

s[f ,j−1],[f ,j],m

⎞⎠⎞⎠⎞⎠ (22)

MAX = max
(
TPEf + TSEf + TIEf

)
, f = 1, 2, . . . , F (23)

For ease of understanding, we give a scheduling case of
BFSP_SDST with balanced energy consumption costs having 9
obs and 3 factories with 3 machines per factory. The processing
ime pj,m and the corresponding unit energy consumption ECProcess

j,m

f job j on machine m are shown in Tables 2 and 3, respectively.
The cost per unit of energy consumption in factory f is EECf =

1, 3, 2] The energy consumption per unit idle EC Idle
m of machine

m is EC idle
m = [2 1 3]. The sequence-dependent setup time

sj,j′,m and the corresponding unit energy consumption ECSetup
j,j′,m are

hown in Tables 4 and 5.
We adopt the Gurobi solver to solve the above example, and

btain the optimal schedule sequence. The job sequence in each
actory is (7, 6, 9), (1, 5) and (4, 3, 8, 2), respectively. The Gantt
chart of the above scheduling sequences is given in Fig. 1. The
optimization objective of this paper is to minimize the energy
consumption costs of the critical factory. The energy consumption
costs of each factory is calculated as the sum of processing energy
cost, setup energy cost, and standby energy cost (in the following,
we will refer to the sum of blocking time and idle time as standby

time).

5

Table 3
Unit processing energy consumption of each job in different machines.
Job Machine

1 2 3

1 4 1 3
2 2 3 1
3 4 3 2
4 3 1 3
5 6 9 2
6 8 4 5
7 5 3 2
8 2 1 3
9 1 3 1

Table 4a
Sequence-dependent setup time of jobs on machine 1.
Job 1 2 3 4 5 6 7 8 9

0 4 8 8 5 8 9 2 6 4
1 – 3 6 1 2 4 1 2 7
2 7 – 2 6 1 2 7 5 1
3 4 5 – 7 5 1 1 3 7
4 6 1 4 – 8 1 2 7 1
5 3 1 4 5 – 9 1 6 9
6 3 6 9 1 6 – 2 6 4
7 6 1 4 5 8 1 – 7 1
8 3 1 4 5 8 9 1 – 9
9 3 6 9 1 6 9 2 6 –

Table 4b
Sequence-dependent setup time of jobs on machine 2.
Job 1 2 3 4 5 6 7 8 9

0 1 2 2 3 2 3 3 3 6
1 – 4 6 7 3 2 7 3 1
2 5 – 8 6 7 3 1 7 8
3 2 3 – 1 7 8 4 6 3
4 6 7 2 – 2 7 3 1 4
5 6 7 2 3 – 3 8 3 3
6 4 5 3 8 3 – 1 2 6
7 6 7 2 3 2 7 – 1 4
8 6 7 2 3 2 3 8 – 3
9 4 5 3 8 3 3 1 2 –

Table 4c
Sequence-dependent setup time of jobs on machine 3.
Job 1 2 3 4 5 6 7 8 9

0 2 2 6 4 2 6 3 6 2
1 – 3 5 2 3 5 2 3 2
2 3 – 3 5 2 3 2 6 5
3 4 4 – 2 6 5 2 1 2
4 5 2 4 – 6 2 3 2 2
5 5 2 4 4 – 6 5 6 6
6 2 4 6 5 6 – 2 1 2
7 5 2 4 4 6 2 – 2 2
8 5 2 4 4 2 6 5 – 6
9 2 4 6 5 6 6 2 1 –

From the Gantt chart, we can see that the maximum comple-
tion time of the sequence is 40. We set the end time of the last
machine in each factory to be the end time of all machines. The
energy consumptions costs TPE1, TSE1 and TIE1 in factory 1 are
260, 77, and 112, respectively. The energy consumptions costs
TPE2, TSE2 and TIE2 in factory 2 are 105, 90 and 237, respectively.
The energy consumptions TPE3, TSE3 and TIE3 in factory 3 are
124, 196 and 96, respectively. The total energy consumptions
costs of factory 1, factory 2 and factory 3 are 449, 432 and 416,
respectively, in which the critical factory is the factory with the
maximum energy consumption cost, that is, EMAX is 449.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

t
h
f

Fig. 1. Gantt chart for a solution to the example problem.
Table 5a
Unit sequence-dependent setup time energy consumption of jobs on
machine 1.
Job 1 2 3 4 5 6 7 8 9

0 2 1 4 4 4 1 2 1 1
1 – 5 8 9 1 6 1 4 3
2 4 – 6 9 3 1 4 5 8
3 1 1 – 5 8 3 2 1 3
4 1 2 3 – 5 8 3 1 1
5 3 5 2 8 – 3 1 1 1
6 3 1 5 8 8 – 3 4 3
7 1 1 4 5 8 3 – 1 3
8 1 2 3 4 5 8 3 – 1
9 3 5 2 8 4 3 1 1 –

Table 5b
Unit sequence-dependent setup time energy consumption of jobs on
machine 2.
Job 1 2 3 4 5 6 7 8 9

0 1 8 2 2 2 2 1 1 3
1 – 3 2 3 8 3 2 1 1
2 1 – 3 3 1 4 2 3 2
3 1 4 – 3 2 1 1 2 3
4 2 1 1 – 3 2 1 1 3
5 1 3 1 2 – 1 1 8 3
6 1 3 3 2 2 – 3 2 1
7 1 4 2 3 2 1 – 2 3
8 2 1 1 2 3 2 1 – 3
9 1 3 1 2 2 1 1 8 –

4. Iterative greedy algorithm with a variable neighborhood
search strategy

For DBFSP_SDST, two problems should be considered simul-
aneously: how to allocate the sequence to the factories and
ow to arrange the sequence of jobs within each factor. There-
ore, considering the characteristics of DBFSP_SDST with balanced
6

Table 5c
Unit sequence-dependent setup time energy consumption of jobs on
machine 3.
Job 1 2 3 4 5 6 7 8 9

0 5 5 4 4 4 5 3 6 4
1 – 4 2 6 5 6 4 3 2
2 3 – 6 6 2 8 4 4 6
3 2 8 – 4 6 4 3 5 2
4 6 7 2 – 4 6 4 6 4
5 3 4 7 6 – 4 6 5 4
6 4 2 4 6 6 – 2 4 4
7 2 8 4 4 6 4 – 5 2
8 6 7 2 4 4 6 4 – 4
9 3 4 7 6 4 4 6 5 –

energy consumption costs criterion, we propose a simple itera-
tive greedy algorithm with variable neighborhood search (VNIG).
The VNIG is a variant of the IG algorithm. Within the while
loop, we design two different local search strategies to adjust
the optimization solution. In addition, a learning-based variable
neighborhood strategy is designed to avoid the solution falling
into local optima.

4.1. Initial solution (MME_en)

NEH2_en has good performance when solving the distributed
permutation flowshop scheduling problem [16]. MME is used to
generate a good initialization solution for the blocking flowshop
scheduling problem [3]. Inspired by the above two heuristics,
we proposed the MME_en heuristic, which is the combination of
NEH2_en and MME, to solve the distributed blocking flowshop
scheduling problem.

The MM algorithm is used to generate a heuristic solution,
π == {π1, π2, . . . , π k, . . . , πn

}, by minimizing the critical path
length, where n is the number of jobs. Let ϕ = {1, 2, . . . , n} be
the set of initial jobs. First, the job with the shortest processing
time on the first machine is chosen as π1, and the job with the
shortest processing time on the last machine is chosen as πn.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

T

A
o
t
p
f
c

p
w
a
u
t
g
T
o
i

he remaining jobs, {π2, . . . , π k, . . . , πn−1
} are obtained using

function (24).

π k
= argmin

j∈ϕ\π

(φ ×

m−1∑
i=1

|pj,i − p[k−1],i+1| + (1 − φ) ×

m∑
i=1

pj,i),

k = 2, 3, . . . , n − 1

(24)

where [k] is the job index of the kth job of the sequence π .
φ is a random number between 0 and 1. After obtaining π =

{π1, π2 . . . , πn
} yielded by the MM heuristic, the jobs in π are

assigned to factories according to the following process. Put first
f jobs of the sequence, π , into each factory one by one. The above
operations ensure the uniformity of the allocated quantity. For
the remaining jobs of the sequence, we take out the jobs one by
one and try to test them in all positions of all factories, and the
position posl∗ in factory Fl∗ with the minimal objective is selected.
t this time, we can guarantee that the energy consumption cost
f each factory is as low as possible, but we cannot guarantee
hat the number of jobs in all factories is the same. Thus, in our
aper, we attempt to optimize the scheduling sequences of each
actory and search for the optimal solution with minimal energy
onsumption costs. After insertion, remove a job from posl∗ − 1
or posl∗ +1 of factory Fl∗, then try to insert it at all locations in Fl∗
until you find the lowest energy cost E ′

l∗. Algorithm 1 gives the
steps of MME_en.

4.2. Effective local search strategies

Neighborhood-based local search has an essential role in im-
roving the quality of solutions. Insert and swap operations are
idely used as local search strategies because of their simplicity
nd efficiency. When we solve the problem with the contin-
ous expansion of the flowshop scheduling, the advantages of
he iterative improvement strategy based on insertion may be
radually declined compared to the one based on swap operation.
his is because the insertion operation needs to move a series
f jobs. The time complexity of multilayer loops is very high,
.e., O

(
n3

)
. However, the time complexity of the swap operation

is O
(
n2

)
[48]. If the termination time is the same, the number

of insert operations will be smaller than that of swap operations,
which will reduce the number of algorithm iterations and make
it difficult to further seek a potential solution. Obviously, if the

optimization objective is further enhanced, the insert operator

7

will spend too much execution time. Therefore, in this paper, to
reduce the time complexity, local perturbation strategies based
on swaps are adopted to improve the local search ability of the
solution.

Based on the distributed feature of DBFSP_SDST, two local
search strategies based on swap permutation are proposed, i.e.,
critical and other factories job swapping (Exter_CriticalFactory_
Swap) [29] and random factory job block swapping (LS_JBS).
The first one randomly selects two jobs from critical and other
factories to perform the swap operator. The last one is to swap the
job block with minimal energy consumption cost and a random
job block and avoid destroying the job block. Based on the above
description, the proposed local search strategies can be given as
follows.

(1) Local search based on critical and other factory job swap-
ping

The energy consumption cost of the critical factory has a direct
influence on the total energy consumption costs. Thus, in this
paper, we propose a local search based on single job swapping
within the two factories, named Exter_CriticalFactory_Swap. Ex-
ter_CriticalFactory_Swap is a swap operation of critical factory
and other factory. Two jobs, job1 and job2 are randomly selected
from a critical factory and random factory, respectively, and swap
the two jobs. (See Algorithm 2)

(2) Local search based on random factory job block swapping
The Exter_CriticalFactory_Swap strategy implemented in the

previous step leads to an improvement in the quality of the
solution by the interaction between two factories. The improved
solution has many excellent job blocks that should be retained.
Thus, to avoid destroying the job block, we utilize the good job
block to disturb the sequence of a random factory to enhance
the quality of the solution. The proposed job block swapping is
named LS_JBS. Compared with the above job swapping, job block
swapping can retain the integrity of the job block with minimum
energy consumption cost. It is noted that LS_JBS is applied to a
random factory, guaranteeing that the energy consumption cost
of each factory may be reduced and further achieve the balance
of the energy consumption cost from each factory.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

j
b

F

o
q
w

In Algorithm 3, define the length d of the job block, randomly
select the factory Fk from {F1, F2, . . . , Fn}, and record the energy
consumption cost Ek of Fk(Ek = TPEk + TSEk + TIEk). When the
number of jobs nFk in Fk is less than or equal to 3 ∗ d, a single
ob exchange (see lines 3–5) is carried out. Otherwise, job block
lock1 and job block block2 (block1 ∩ block2 = ∅) are randomly

selected from sequence π0. Swap block1 and block2 (see lines 6–9).
inally, the acceptance criterion is executed (see lines 10–16).

4.3. Improved variable neighborhood search strategies

In the local search, the solution easily falls into the local
ptima because of the slight disturbance. In view of this, if the
uality of the solution is not improved after num generations, we
ill execute an improved variable neighborhood search (IVNS, for

short) strategy to avoid the solution trapping into local optima.
Furthermore, to enhance the diversity or globality of the solution,
we first use destruction and reconstruction strategies to disturb
the current solution. After this, we try to adopt different oper-
ators to produce a promising solution, which can improve the
quality of the solution. In this paper, one of the three strategies,
i.e., Exter_CriticalFactory_Swap (shown in Algorithm 2), Insert_K,
and Insert_D, is chosen by the learning-based selection strategy
in the IVNS strategy shown in Algorithm 4.

In Algorithm 4, cnt records the number of cycles of IVNS, R0,
R1, and R2 record the number of executions of Exter_
CriticalFactory_Swap, Insert_K, and Insert_D, respectively. PL is the
number of jobs that are removed and reinserted in destruction
and reconstruction. The first step is to perform destruction and
reconstruction strategies to disturb the current solution. For the
first z times of IVNS, the random strategy is adopted (see lines
21–30). If the solution is improved, the corresponding Ri = Ri +

1, (i = 0, 1, 2). After applying IVNS several times, the strategy
will be selected according to the value of the probability P .
i

8

In the IG algorithm, the destructive and reconstruction op-
erations are used to largely disturb the current solution and
effectively avoid the algorithm from falling into a local opti-
mum. In our algorithm, the destructive and reconstruction (DR,
for short) strategies are applied in IVNS as the first step. The
framework of DR is shown in Algorithm 5.

The DR strategy is divided into two parts: destruction and
reconstruction. For the destruction, factory Fl is randomly se-
lected from {F1, F2, . . . , Ff }. If factory Fl has more than one job,
a job will be randomly selected from Fl and put into the empty
collection π temp, and correspondingly, the selected job is deleted
from the original sequence. The above operation is performed PL

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

t
t
o
b
(
s

f
t
c
s
m
c
s
t
M
f
c

t
b
o
c
j
f

B

o
o
c
a
t
t
o
c

t

v

e
c
u
i
w
s
m
r
w
a
m
(
i
r
m

imes so that there are PL jobs in set π temp (see lines 1–9). For
he reconstruction operation, we remove jobi from π temp one by
ne, try to insert it at all positions of all factories, and find the
est position posl∗ with the minimum energy consumption cost
see lines 12–16). The above step is repeated until all the jobs in
equence π temp have been removed.
Insert_K (π) refers to the insert operation in a factory. The

actory Fk is randomly selected from the set {F1, F2, . . . , Ff }, and
he job sequence of Fk is πk. Calculate the sum of the energy
onsumption cost of each job processing at all machines in the
elected factory, and the formula is JobE[Fk,j]. We believe that the
ovement of a job with large processing energy consumption
ost is more likely to have an impact on the quality of the
olution. Therefore, the job with the maximum energy consump-
ion cost is selected from the factory, denoted as MaxJob. Next,
axJob is inserted into all positions of the solution from all the

actories, and the position with the minimal value of total energy
onsumption cost is selected.

Insert_D (π , l) states a job block dispersal insertion method
o increase the diversity of the solution. Compared with the job
lock insertion operation, Insert_D (π , l) makes it easier to jump
ut of the local optimum. The job block with maximum energy
onsumption cost is obtained from a random factory. Next, each
ob in the block is reinserted in the best position of all the
actories one by one. In Algorithm 7, first, define the length l of the
job block. Then, randomly select the factory Fr in {F1, F2, . . . , Ff },
find the block of jobs with maximum energy consumption cost
from Fr and store it in the array Block. In lines 3–7, the jobs are
taken from Block and reinserted at all positions in all the factories.
The position with the minimal total energy consumption cost is
found. The above steps are repeated until all the jobs in the job
block are inserted.

5. Experiments and analysis

5.1. Experiment settings

In this section, we validate the performance of the VNIG.
ecause there are few algorithms for solving DBFSP_SDST with
 a

9

balanced energy cost criterion. Therefore, we selected some algo-
rithms that were used to solve the DFSP that are closely related to
the DBFSP_SDST. The compared algorithms are artificial chemical
reaction optimization (CRO) [16], the discrete artificial bee colony
algorithm (DABC) [36], the iterative greedy algorithm with a
restart scheme (IGR) [28], and an evolution strategy approach
(ES) [49]. In our experiments, the following comparison was
performed:

(1) Verification of the MILP model
(2) Sensitivity study on three parameters
(3) Comparison of the proposed MME_en and NEH2_en.
(4) Validate the effectiveness of IVNS
(5) Comparison results between the VNIG algorithm and the

existing four compared algorithms.
In this paper, we choose 90 instances, where the number of

jobs n comes from the set {100, 200, 300, 400, 500}, the number
f machines m comes from the set {5, 8, 10}, and the number
f factories f is {2, 3, 4, 5, 6, 7}. Thus, 90 different combinations
an be obtained by combining m, n, and f . The processing data
re generated as follows. The values of setup time and processing
ime are in the range of [1,99), and we set the energy consump-
ion per unit of processing, setup, and standby as in the range
f [4, 6], [1, 3], [1, 2], respectively. The cost per unit of energy
onsumption in each factory is in the range of [1, 10].
For the termination criterion of all the compared algorithms,

he same maximal elapsed CPU time of TimeLimit = t × n × m
milliseconds, where n represents the number of jobs, m refers
to the number of machines, and t is equal to 2 and 3. Thus, the
computation time can be adjusted for different sizes of instances
and the value of t . To evaluate the performance of the proposed
algorithm, we choose the energy consumption cost objective and
the relative percentage increase (RPI) as evaluation indicators.
The formula for calculating RPI is as follows.

RPI =
Mi − Mbest

Mbest
× 100 (25)

where Mi is the average energy consumption cost value of the
ith algorithm and Mbest is the optimal value obtained by all the
algorithms. A smaller value of RPI means a better performance.

We also used normalization to process the results. Normal-
ization reduces the values to [0,1] in equal proportions, aim-
ing to make the differences between the values clearer. The
normalization formula is as follows.

y′
=

x − min(xi)
max(xi) − min(xi)

, 1 < i < σ (26)

where y′ is the value after normalization and x is the value that
needs to be processed. σ is the number of compared algorithms.
min(xi) and max(xi) denote the minimum and maximum of the
alues to be processed, respectively.
In this study, all the algorithms adopt the same maximal

lapsed CPU time with the unit of milliseconds as the termination
riterion. All the experiments should be conducted and compared
nder the same or stricter conditions. Variety algorithms are
mplemented on different PCs, and the implementation settings
ill be different. In this circumstance, using execution time as the
topping criterion will no longer be reliable since execution time
ay be affected by the operating system and other applications

unning during the experiments. Thus, all the algorithms are
ritten in Visual C++ 2019, and the same library functions are
dopted in this study to make a fair comparison. For their imple-
entations, all the algorithms are realized on a PC with Pentium

R) Dual 2.9 GHz and 8 G memory, in which the operating system
s Microsoft Windows 7 X 64. In addition, the same background
unning environment is employed, the background processes that
ay occupy system resources are closed, and no other programs
re executed in parallel while implementing an algorithm.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

v
I
m
s
o
b
a
T
p
O
c
b
t

G
a
t
t
t
e
t
e
o
b
t
t
i

5

s
f
l
o
r
z
A
w

{

{

b
f
1
4
r
c

o

p

Table 6
Result for the MILP model.
F_J_M Gap by

Gurobi
Energy consumption
cost by Gurobi (time)

Energy consumption
cost by VNIG (time)

3_6_3 0% 514 (0.07 s) 514 (0.036 s)
3_7_3 0% 574 (1 s) 574 (0.105 s)
3_9_3 0% 652 (32.64 s) 652 (0.81 s)
3_10_3 0% 656 (669.82 s) 656 (1.5 s)
3_12_3 23.40% 752 (1000 s) 782 (1.8 s)
3_14_3 26.04% 845 (1000 s) 825 (2.1 s)
3_16_3 21.68% 895 (1000 s) 890 (2.4 s)
3_20_3 21.76% 1190 (3600 s) 1110 (6 s)
3_30_3 21.05% 1910 (3600 s) 1904 (13.5 s)
3_40_3 19.84% 2424 (3600 s) 2400 (18 s)

5.2. Verification of the MILP model

In this section, we select eight instances with small sizes to
erify the effectiveness of MILP using the Gurobi solver [48].
n Table 6, F_J_M represents the numbers of factories, jobs and
achines. We set the running time to 1000 s and 3600 s to ensure
ufficient time to search for the solution. Table 6 gives the values
f the gap, running time, and energy consumption cost obtained
y Gruobi. In addition, the values of energy consumption cost
nd running time obtained by our VNIG algorithm are listed in
able 6. Gap = 0 means that the optimal solution is found for the
roblem. For a minimization model, Gap is computed as (ObjVal-
bjBound)/ObjVal, where ObjVal is the objective value for the
urrent solution, and ObjBound is the lower bound that gives a
ound of the best possible objective. Thus, if the gap is not equal
o 0, it does not mean that no optimal solution is found.

As seen from Table 6, the optimal solution will be found by
urobi when the size of instance is small, i.e., 3_6_3, 3_7_3 3_9_3,
nd 3_10_3 instances. For 4 out of 10 instances, the values of
he energy consumption cost obtained by Gurobi and VNIG are
he same. However, the computation time of VNIG is far less
han that of Gurobi. For 5 out of 10 instances, the values of the
nergy consumption cost yielded by Gurobi are good, suggesting
hat the Gurobi solver can obtain better solutions in small-scale
xamples than those of VNIG. However, with the increasing scale
f the instances, the solutions obtained by VNIG are gradually
etter than those obtained by the Gurobi solver, and it takes less
ime. Therefore, we believe that the VNIG solver is more suitable
han the Gurobi solver for solving large-scale and complicated
nstances.

.3. Parameters calibration

To demonstrate the effectiveness of the proposed algorithm,
ensitivity analyses of the five parameters are first conducted. The
ive parameters are d (the length of the job block swapping), l (the
ength of the job block insertion), num (the execution number
f the unimproved solution), PL (the number of jobs that are
emoved and reinserted in destruction and reconstruction), and
(the threshold value used for the random selection strategy in
lgorithm 5). To better determine the values of the parameters,
e adopt the Taguchi experimental method to calibrate them.
Table 7 shows the five factor levels of each parameter, i.e., d ∈

1, 2, 3, 5, 7}, l ∈ {1, 3, 4, 6, 9}, num ∈ {1, 3, 5, 8, 10}, PL ∈

2, 3, 4, 5, 9}, and z ∈ {10, 30, 50, 70, 90}. We obtained 25 com-
inations by the orthogonal table listed in Table 8. For the sake of
airness, we select eight instances with different sizes, e.g., 100 ×

0 × 2, 200 × 8 × 3, 200 × 10 × 6, 300 × 5 × 4, 300 × 8 × 7,
00 × 10 × 4, 500 × 5 × 2 and 500 × 8 × 5. Each instance is
un 20 times independently under the same conditions, and the

orresponding RPI values are obtained. Subsequently, the mean l

10
Table 7
Parameters level.
Parameters Parameters level

1 2 3 4 5

d 1 2 3 5 7
l 1 3 4 6 9
num 1 3 5 8 10
PL 2 3 4 5 9
z 10 30 50 70 90

Table 8
Orthogonal array and response value.
Combination Parameters Response (RPI)

d l num PL z

1 1 1 1 2 10 0.477362
2 1 3 3 3 30 0.513544
3 1 4 5 4 50 0.495309
4 1 6 8 5 70 0.550468
5 1 9 10 9 90 0.676341
6 2 1 3 4 70 0.513624
7 2 3 5 5 90 0.525749
8 2 4 8 9 10 0.569902
9 2 6 10 2 30 0.487203
10 2 9 1 3 50 0.509608
11 3 1 5 9 30 0.571204
12 3 3 8 2 50 0.539073
13 3 4 10 3 70 0.529518
14 3 6 1 4 90 0.557715
15 3 9 3 5 10 0.571028
16 5 1 8 3 90 0.530301
17 5 3 10 4 10 0.574164
18 5 4 1 5 30 0.581162
19 5 6 3 9 50 0.617788
20 5 9 5 2 70 0.55007
21 7 1 10 5 50 0.593352
22 7 3 1 9 70 0.604799
23 7 4 3 2 90 0.497132
24 7 6 5 3 10 0.569272
25 7 9 8 4 30 0.561151

Table 9
The mean RPI response values and rank of each parameter.
Level d l num PL z

1 0.5426 0.5372 0.5461 0.5102 0.5523
2 0.5212 0.5515 0.5426 0.5304 0.5429
3 0.5537 0.5346 0.5423 0.5404 0.551
4 0.5707 0.5565 0.5502 0.5644 0.5497
5 0.5651 0.5736 0.5721 0.608 0.5574
Delta 0.0495 0.039 0.0298 0.0978 0.0146
Rank 2 3 4 1 5

RPI values of the five instances with different combinations of
parameters are integrated. According to the obtained RPI, the
trend of the factor level is plotted in Fig. 2.

Table 9 lists the significance level of each parameter according
to the average RPI value of each scale instance, where Delta mea-
sures the size of the effect by taking the difference between the
maximum and minimum average RPI of the four factors. A larger
value of Delta generally indicates a more significant influence.
In addition, a smaller Rank value means a larger difference for
different values of the parameter.

As seen from Table 9, the parameter PL has the greatest impact
n the algorithm, followed by d, l, num and z. From Fig. 2, the

parameter PL has the best effect when the value is 2. As the
number of broken jobs increases, the efficiency of the algorithm
becomes low. We believe that too much job block destruction
may lead to the destruction of excellent job sequences, which
degrades the performance of the algorithm. When d = 2, the
erformance of VNIG is great. With the increase in job block
ength, the algorithm becomes progressively less effective. The

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

r
a
d
i
s
s
o
r
d
d
W
l
l
o
t
t
z

z

p
c

Fig. 2. The trend of the factor level.
Fig. 3. Confidence intervals for NEH2_en and MME_en.
eason may be that the current solution in a factory may be an
pproximated optimal solution before disturbing; thus, a slight
isturbing should be done. However, if the length of the job block
s large, the disturbance to the sequence will be very large by
wapping the job block, which leads to the generation of a bad
olution. For the length l of the job block insertion, the algorithm
btains the minimal mean RPI value when the value of l is 4. The
eason may be that if the length of the job block is small, the
isturbance to the sequence will be small, which leads to poor
iversity. When num = 5, the VNIG shows great performance.
e believe that an num value that is too small will make the

ocal search strategy not fully work, and an num value that is too
arge will not jump out in time when the solution falls into a local
ptimum, which will take more time. Therefore, it is reasonable
hat the value of num is 5. Parameter z has a small impact on
he algorithm. The performance of the algorithm is good when
= 30. According to the above experimental results and analysis,

we set the parameters as d = 2, l = 4, num = 5, PL = 2 and
= 30.
In addition, we calibrated the parameters of the four com-

ared algorithms using the Taguchi experimental method. The
alibration results are shown in the supplementary data.
11
5.4. Comparison of the results of NEH2_en and MME_en

NEH2_en proposed by Ruiz and Pan can generate high-quality
solutions [18] and show better performance than NEH. Therefore,
based on this, we combined the MM and NEH2_en to propose
an efficiency MME_en strategy. To evaluate the performance of
the proposed initialization strategy, we equip the developed al-
gorithm with NEH2_en and MME_en heuristics. The experimental
results are shown in Fig. 3 when t = 2 and 3.

From Fig. 3, the RPI value of MME_en is lower than that of
NEH2_en, which indicates that the former is more efficient in
seeking promising solutions for the DBFSP. The results suggest
that the MM heuristic has a better performance in optimizing the
makespan of BFSP than other heuristics. The reason is that MM
selects the job based on the blocking time on these machines by
utilizing the shortest critical path, which can effectively deal with
the blocking constraint.

5.5. Validation of the effectiveness of the variable neighborhood
search strategy based on the learning method

To comprehensively evaluate the performance of the proposed
improved learning-based variable neighborhood search strategy,
we test the performance of learning-based IVNS and IVNIG with
only applying Exter_CriticalFactory_Swap, Insert_K, and Insert_D

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

s
p
g
s
c

m
t
p
t
s
t
o
t
i
i
b
s
d

Fig. 4. RPI for disturbing strategies and IVNS.
Fig. 5. Minimum and Maximum values after normalization of the compared algorithms when t = 2.
Fig. 6. Minimum and Maximum values after normalization of the compared algorithms when t = 3.
v
t
T
t
a
c
t
b

trategies. For the sake of convenience, the IVNS with only ap-
lying Exter_CriticalFactory_Swap, Insert_K, and Insert_D strate-
ies is named as EC_swap, Insert_K, and Insert_D strategies, re-
pectively. They run the same test instances under the same
onditions.
From Fig. 4(a), we observe that the difference in the perfor-

ance between EC_Swap and Insert_D is not significant except
hat the performance of Insert_K was slightly worse, and the
erformance of IVNS is best among the above compared opera-
ors. Except for that, we test the scenario with jobs of different
izes. From Fig. 4(b), EC_Swap shows great performance when
he numbers of jobs are 100, 300, 400 and 500. Insert_K can
btain the great solutions when the number of jobs is 200, and
he performance of Insert_D is excellent when the number of jobs
s 400 and 500. However, considering the above three operators
n the variable neighborhood search strategy, the variable neigh-
orhood search strategy based on the learning method can obtain
uperior results in most situations. The reason might be that the
ifferent operators can generate more promising solutions, which
 t

12
can improve the exploitation of an algorithm by disturbing the
current solution.

5.6. Comparison results between the VNIG algorithm and the five
compared algorithms

In this section, the five algorithms, i.e., CRO [16], DABC [36],
IGR [28], ES [49] (the parameters of the comparison algorithm
were calibrated according to the method in Section 5.3.), and
the proposed VNIG is compared for t = 2 and t = 3 (t is the
ariable used to adjust the running time; the larger the value of
is, the longer the running time of the algorithm), respectively.
he experimental results are listed in Tables 10 and 11, respec-
ively, where a row represents the results obtained by different
lgorithms in terms of the average and RPI values of the energy
onsumption cost objective. In addition, Figs. 5 and 6 display
he maximum and minimum values for 90 instances obtained
y all the compared algorithms. The confidence intervals and
he evolutionary curve of all the compared algorithms are given

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502
Table 10
Energy consumption costs of the compared algorithms when t = 2.
Job m ∗ f DABC2018 VNIG IGR2020 ES2022 CRO2017

avg RPI avg RPI avg RPI avg RPI avg RPI

100

5 ∗ 2 107683.7 9.33 98812.1 0.32 99538.8 1.06 99425.9 0.95 99523.1 1.04
8 ∗ 2 241849.8 11.99 217059.2 0.51 218203.9 1.04 218326.8 1.10 218433.9 1.15
10 ∗ 2 263729.6 9.75 241179.7 0.36 243571.4 1.36 243191 1.20 243370.3 1.27
5 ∗ 3 97356.1 10.07 89076.8 0.71 89521.2 1.21 89311.5 0.97 89595.9 1.29
8 ∗ 3 259707.4 10.72 235782.3 0.52 237808.2 1.38 237585.9 1.28 238043.1 1.48
10 ∗ 3 375025.8 9.85 342621 0.36 345494.1 1.20 344115.7 0.79 345473.3 1.19
5 ∗ 4 67717.1 11.00 61304.9 0.49 62149.7 1.87 61643.3 1.04 61857.9 1.39
8 ∗ 4 274612.6 10.68 248730.8 0.25 251984.5 1.56 251540.4 1.38 252053.8 1.59
10 ∗ 4 446432.7 10.65 405018.9 0.38 410550.4 1.76 408739.4 1.31 409327.3 1.45
5 ∗ 5 122285.8 10.48 111363.8 0.61 113212.6 2.28 111934.8 1.13 112817.6 1.93
8 ∗ 5 413736.2 11.04 374732.2 0.57 379404.7 1.83 377488.5 1.31 380435.6 2.10
10 ∗ 5 220447.1 11.38 198995.1 0.54 201062.5 1.58 200681.8 1.39 201636.1 1.87
5 ∗ 6 70789.5 11.29 63906.5 0.47 64523.9 1.44 64067.3 0.72 64897 2.03
8 ∗ 6 246534.2 11.60 221701.5 0.36 224615 1.68 223008.1 0.95 224973 1.84
10 ∗ 6 218040.1 10.96 197194.5 0.35 199564.2 1.56 199234.4 1.39 200290.5 1.93
5 ∗ 7 99387.4 12.41 89111.1 0.79 89783 1.55 89183.8 0.87 90514.2 2.37
8 ∗ 7 741817.6 10.46 672502.1 0.14 678004.2 0.95 675931.6 0.65 675920.7 0.64
10 ∗ 7 974158.9 9.41 892617.2 0.25 901197.6 1.21 897511.6 0.80 900861 1.17
Mean 291184.0 10.72 264539.4 0.44 267232.8 1.47 266273.4 1.07 267223.6 1.54

200

5 ∗ 2 287350.2 10.73 260245 0.29 261644.2 0.83 261293.7 0.69 261538.1 0.79
8 ∗ 2 871425 9.55 797772.2 0.29 805428.2 1.25 801757.6 0.79 801577.2 0.77
10 ∗ 2 2265412 8.03 2102349 0.26 2123410 1.26 2116478 0.93 2115328 0.88
5 ∗ 3 221064.5 10.76 199961.3 0.19 201688.5 1.05 200914.3 0.67 201415.7 0.92
8 ∗ 3 558230.4 8.85 514281.6 0.28 518947 1.19 517639.2 0.93 517832.4 0.97
10 ∗ 3 640871.5 9.12 589411.5 0.36 593505 1.05 592180.1 0.83 593868 1.12
5 ∗ 4 234815.2 11.30 211770.3 0.38 213447.8 1.17 212609.3 0.78 213480.1 1.19
8 ∗ 4 690437.4 10.04 630088.1 0.42 638704.8 1.79 634769.2 1.16 636029.5 1.36
10 ∗ 4 1088798 8.22 1008091 0.20 1021621 1.54 1015898 0.97 1018893 1.27
5 ∗ 5 172276.2 9.80 157598 0.45 159080.6 1.39 158464.1 1.00 159068.2 1.38
8 ∗ 5 729530.4 10.65 661189.6 0.28 671643.7 1.87 668243.3 1.35 671378.3 1.83
10 ∗ 5 974158.9 9.41 892617.2 0.25 901197.6 1.21 897511.6 0.80 900861 1.17
5 ∗ 6 166245.2 11.07 150116.2 0.30 151617.4 1.30 151298.2 1.09 151675.2 1.34
8 ∗ 6 539975.5 11.99 485414.3 0.67 493767 2.40 490197.1 1.66 493096.5 2.26
10 ∗ 6 417041.1 9.21 383379.9 0.40 388295.6 1.69 385193.6 0.87 385607 0.98
5 ∗ 7 99039.3 9.85 90397.9 0.27 91183.1 1.14 90822.2 0.74 91196 1.15
8 ∗ 7 171544.6 9.43 157529.8 0.49 159924.4 2.01 158823.6 1.31 159091.7 1.48
10 ∗ 7 421748.6 10.29 383586.8 0.31 389470.5 1.85 386885.7 1.18 388382.6 1.57
Mean 586109.1 9.91 537544.4 0.34 543587.6 1.45 541165.5 0.99 542239.9 1.25

300

5 ∗ 2 741817.6 10.46 672502.1 0.14 678004.2 0.95 675931.6 0.65 675920.7 0.64
8 ∗ 2 3346741 9.44 3068009 0.32 3095932 1.24 3081558 0.77 3083167 0.82
10 ∗ 2 2970733 8.71 2736407 0.14 2752796 0.74 2751408 0.69 2751547 0.69
5 ∗ 3 1192222 12.95 1058036 0.24 1071903 1.55 1067497 1.13 1070352 1.40
8 ∗ 3 969296.6 10.03 883490.9 0.29 894131.6 1.50 889083.9 0.93 889532.8 0.98
10 ∗ 3 2103154 8.45 1943054 0.19 1960924 1.12 1955334 0.83 1957410 0.93
5 ∗ 4 338870.7 11.20 305277.6 0.17 307893.4 1.03 306857.8 0.69 307616.5 0.94
8 ∗ 4 520527.7 9.98 474733 0.30 480403.1 1.50 477478.3 0.88 478268.7 1.05
10 ∗ 4 1343634 9.06 1234593 0.21 1250594 1.51 1244236 0.99 1245565 1.10
5 ∗ 5 612725 10.60 555647.4 0.29 563234.9 1.66 559909.8 1.06 561886.5 1.42
8 ∗ 5 375199.9 8.85 345010.8 0.10 348676.5 1.16 346968.7 0.66 347729.6 0.88
10 ∗ 5 818390.9 8.64 755444.2 0.28 761889.3 1.14 760663.1 0.98 761011 1.02
5 ∗ 6 450991.6 12.00 404488.6 0.45 408478 1.44 407057.5 1.09 408522.1 1.45
8 ∗ 6 371006.1 10.50 336657.2 0.27 340758 1.49 338915.4 0.94 340261 1.34
10 ∗ 6 869756 9.89 793212.7 0.22 801750.6 1.30 799061.6 0.96 801820.3 1.30
5 ∗ 7 174999.7 10.11 159557.7 0.40 161537.7 1.64 160713.9 1.12 161554.9 1.65
8 ∗ 7 822552.1 10.14 748492 0.22 756747.7 1.33 756112.6 1.24 757062.6 1.37
10 ∗ 7 560438 10.68 507871.9 0.30 514602 1.63 511973.7 1.11 513579.2 1.42
Mean 1032392.0 10.09 943471.4 0.25 952792.0 1.33 949486.7 0.93 950711.5 1.14

400

5 ∗ 2 1430559 11.13 1289738 0.19 1297237 0.77 1295463 0.63 1296189 0.69
8 ∗ 2 2748351 9.39 2517102 0.18 2542494 1.19 2531784 0.77 2530290 0.71
10 ∗ 2 4955614 8.73 4565990 0.18 4607398 1.09 4596773 0.86 4591031 0.73
5 ∗ 3 1198829 10.28 1089260 0.20 1097582 0.96 1094224 0.66 1096504 0.87
8 ∗ 3 2368007 9.12 2174403 0.20 2189725 0.91 2183414 0.61 2189302 0.89
10 ∗ 3 1360247 8.91 1250931 0.15 1260089 0.89 1257246 0.66 1258415 0.75
5 ∗ 4 847639.4 11.91 758813.4 0.18 768866.8 1.51 764446.7 0.93 767075.1 1.27
8 ∗ 4 1269549 9.99 1156808 0.22 1170118 1.37 1164083 0.85 1166934 1.10
10 ∗ 4 493735.4 8.42 456892.4 0.33 462161.6 1.48 459109.7 0.81 459621.6 0.93
5 ∗ 5 262584.6 11.90 235277.2 0.26 237214.2 1.09 236553.6 0.81 237092.4 1.04

(continued on next page)
in Figs. 7 and 8 to show their identification and convergence,
respectively.
13
Tables 10 and 11 list the PRI and average energy consumption
cost value of the algorithms for 90 different instances. From the

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

i
e
o
i
c
t
d
F
w
o
w
e
a
M
t
p
c
t

g
m
s
F
i
E
I
t
l
D

Table 10 (continued).
Job m ∗ f DABC2018 VNIG IGR2020 ES2022 CRO2017

avg RPI avg RPI avg RPI avg RPI avg RPI

8 ∗ 5 322469.8 9.78 294732 0.34 296413 0.91 296114.8 0.81 296330 0.88
10 ∗ 5 1185483 9.16 1087866 0.17 1100967 1.38 1096256 0.94 1097633 1.07
5 ∗ 6 413679.9 12.50 368378.2 0.18 371856.4 1.12 370489.9 0.75 371756.5 1.10
8 ∗ 6 523239.2 9.03 480807.6 0.19 484267.5 0.91 482739.3 0.59 484231.3 0.90
10 ∗ 6 520846.3 9.82 475209.4 0.20 480008.9 1.21 477888.9 0.76 478398.3 0.87
5 ∗ 7 275393.1 9.75 251794 0.35 252909.4 0.79 251496.8 0.23 252900.5 0.79
8 ∗ 7 721726.7 10.03 657116 0.18 664268.3 1.27 661723 0.88 664147.9 1.25
10 ∗ 7 629229.4 9.41 577151.7 0.35 583903.3 1.53 579826 0.82 581284.8 1.07
Mean 1195954.6 9.96 1093776.3 0.22 1103748.9 1.13 1099996.1 0.75 1101063.1 0.94

500

5 ∗ 2 3034919 12.80 2695152 0.17 2725020 1.28 2709918 0.72 2713449 0.85
8 ∗ 2 5832302 9.25 5346469 0.15 5376079 0.71 5371911 0.63 5374745 0.68
10 ∗ 2 5741000 8.64 5294060 0.18 5342580 1.10 5322976 0.73 5319768 0.67
5 ∗ 3 1508880 9.39 1381425 0.15 1390310 0.79 1386630 0.53 1387709 0.61
8 ∗ 3 3368735 10.34 3057950 0.16 3087004 1.11 3078550 0.83 3079745 0.87
10 ∗ 3 3262112 7.91 3026719 0.12 3058660 1.18 3045876 0.76 3043731 0.69
5 ∗ 4 1379045 11.15 1244062 0.27 1253434 1.03 1248487 0.63 1252282 0.93
8 ∗ 4 1478380 7.82 1373001 0.13 1381548 0.75 1379960 0.64 1379952 0.64
10 ∗ 4 904553.3 10.39 821462.8 0.25 827572.9 1.00 827015 0.93 826508.8 0.87
5 ∗ 5 1406530 11.37 1265693 0.21 1280320 1.37 1272129 0.72 1278006 1.19
8 ∗ 5 1083803 9.61 991399.4 0.26 999105.6 1.04 997567 0.89 998298.6 0.96
10 ∗ 5 1657984 9.89 1510551 0.12 1527980 1.27 1522145 0.89 1523218 0.96
5 ∗ 6 451254 11.72 404623.4 0.18 408509 1.14 406703.5 0.69 407927.4 1.00
8 ∗ 6 1365419 9.05 1253950 0.15 1266751 1.17 1262061 0.80 1263565 0.92
10 ∗ 6 1318780 9.00 1211800 0.16 1221142 0.93 1218381 0.70 1220216 0.85
5 ∗ 7 619427.1 11.78 555419.6 0.23 562908.8 1.58 559308.1 0.93 561918.3 1.40
8 ∗ 7 659570.8 11.23 593452.9 0.08 600215 1.22 597319.7 0.73 598713.5 0.97
10 ∗ 7 749013.5 8.58 691048 0.18 697259.2 1.08 694894.2 0.74 696149.1 0.92
Mean 1990094.9 9.99 1817679.9 0.18 1833688.8 1.10 1827879.5 0.75 1829216.8 0.89
r

results, the VNIG obtains the best results for most instances. The
performance of the ES algorithm is second only to VNIG. The IGR
algorithm performs worse than VNIG and ES in solving the DBFSP
with balanced energy cost. Overall, the VNIG substantially outper-
forms the compared algorithms for solving the DBFSP_SDST with
balanced energy cost. It may be that the proposed variable local
search can better explore unknown neighborhoods and prevent
the solution from falling into a local optimum.

Figs. 5 and 6 report the minimum and maximum values of 90
nstances yielded by all the compared algorithms. Because the en-
rgy combustion cost value is large, the gap between the results
f different algorithms is small when the results are displayed
n a figure. Therefore, to show the gap between algorithms more
learly, we normalize the results using Eq. (26). The purpose is
o reduce the values in equal proportion and to clearly show the
ifferences. The minimum and maximum values are shown in
igs. 5–6 when t = 2 and t = 3, respectively. From Figs. 5–6,
e know that the maximum values among all the algorithms are
btained by DABC, so it can be inferred that this algorithm has the
orst performance in solving the DBFSP_SDST with balanced en-
rgy cost. CRO shows large fluctuations on some small instances
nd gradually stabilizes as the size of the instances increases.
eanwhile, we can conclude that the performance of ES is better

han that of IGR. As a whole, the values obtained by the VNIG
roposed in this paper are excellent in most cases, and we can
onsider that the performance of VNIG in solving DBFSP_SDST is
he best among the compared algorithms.

To have a clear identification of the experimental results, we
ive the ANOVA of all the algorithms. As shown in Fig. 7, the
eans plots and interactions plots with 95% LSD intervals repre-
ent the average level and overall performance of the algorithms.
rom Fig. 7, it can be seen that the VNIG proposed in this paper
s better than the compared algorithms. The performance of the
S algorithm is worse than that of VNIG but better than that of
GR. In addition, the performance of CRO and IGR is better than
hat of DABC. We can assume that the algorithm with outstanding
ocal search capability can show superior performance in solving
BFSP_SDST.
14
To better demonstrate the convergence of the proposed algo-
ithm, we chose scales of 100 × 10 × 3, 200 × 10 × 3, 300 ×

10 × 3, and 500 × 8 × 5 as examples and plotted the evolutionary
curves. The algorithms are running at t = 10 when the instance
size is small, and the large instance is run at t = 20. The
result is shown in Fig. 8, where the X-axis represents the running
time (unit: seconds) and the Y -axis represents the total energy
consumption cost. All comparison algorithms are listed by differ-
ent lines. According to the analysis above, we can conclude that
the performance of DABC is poor. Therefore, to better show the
evolutionary trend of other algorithms, we have removed DABC in
Fig. 8. From the four instances, the convergence of the proposed
algorithm VNIG is the most rapid among the four algorithms. The
VNIG can obtain an excellent initial solution and obtain the best
result among the compared algorithms. From Fig. 8, we observe
that VNIG can always get excellent solutions in different sizes
of examples, which further demonstrates the effectiveness of the
VNIG algorithm in solving the DBFSP_SDST with balanced energy
cost.

Remarks. As the above experimental results and analysis show,
the proposed VNIG algorithm is an effective algorithm for solving
the DBFSP_SDST with balanced energy cost. The reasons can
be concluded as follows. (1) The MME_en strategy combining
the MM algorithm and NEH2_en makes the algorithm obtain
an excellent initial solution, and a high-quality initial solution
is of great importance for the improvement of the solution. (2)
Several local search strategies based on energy consumption cost
can enhance the neighborhood search ability to further improve
the quality of the solution. (3) The variable neighborhood search
strategy based on the learning selection method is the key opera-
tion that enables increasing the diversity of VNIG by avoiding the
solution from falling into local optima in the large-scale instance.
Based on the above analyses, the effective neighborhood search
operations and the variable neighborhood search strategy based
on the learning selection method are reasons for the outstanding
performance of VNIG.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502
Table 11
Energy consumption costs of the compared algorithms when t = 3.
Job m ∗ f DABC2018 VNIG IGR2020 ES2022 CRO2017

avg RPI avg RPI avg RPI avg RPI avg RPI

100

5 ∗ 2 467826.8 10.41 425341.6 0.38 431018 1.72 427832.8 0.97 428566.6 1.14
8 ∗ 2 625155.6 11.14 564759.6 0.41 570072 1.35 569608.8 1.27 569234.7 1.20
10 ∗ 2 228788.2 10.23 207919.6 0.18 210942.9 1.63 210496.3 1.42 210500.5 1.42
5 ∗ 3 132459.2 14.10 116668.6 0.50 117678.6 1.37 117285.9 1.03 117887 1.55
8 ∗ 3 461279 10.50 418654.8 0.29 423876.1 1.54 422433.9 1.19 422721.2 1.26
10 ∗ 3 458603.1 8.33 424254.6 0.21 427898.1 1.07 426746.2 0.80 428246.8 1.16
5 ∗ 4 151309.6 10.47 137507.2 0.39 138684.7 1.25 138037.8 0.78 139238.6 1.65
8 ∗ 4 424778.5 9.02 391479 0.47 394059.1 1.14 393176 0.91 395860.5 1.60
10 ∗ 4 277418.6 9.34 255351.6 0.65 257738.2 1.59 256707.8 1.18 257217 1.38
5 ∗ 5 56551.3 10.04 51636.9 0.48 52190.6 1.55 51984.4 1.15 52424.7 2.01
8 ∗ 5 325389.4 10.91 294722.8 0.46 296059.8 0.92 295994 0.89 298008.9 1.58
10 ∗ 5 400656.2 11.10 362520.2 0.53 364816.1 1.16 363976.5 0.93 367335.1 1.86
5 ∗ 6 174907 11.89 157647.3 0.84 159328.4 1.92 158251.8 1.23 159831 2.24
8 ∗ 6 308722.3 10.98 280101.7 0.69 283610.1 1.95 282956.4 1.72 285363.6 2.58
10 ∗ 6 329940 10.12 301292.4 0.56 303979.2 1.46 302140.1 0.84 305489.8 1.96
5 ∗ 7 121923.3 12.38 109167.8 0.62 110655.6 1.99 109634.3 1.05 111490.3 2.76
8 ∗ 7 138743.3 10.51 126586.1 0.82 127763.1 1.76 126958.7 1.12 128080.6 2.01
10 ∗ 7 167656.1 9.87 153135.3 0.35 155127.4 1.66 154997.9 1.57 155026 1.59
Mean 941746 9.29 863973.6 0.27 868704.8 0.82 866442.4 0.55 867898.8 0.72

200

5 ∗ 2 325992.3 10.6 296985.3 0.5 299694.9 1.5 298719.1 1.1 300022.2 1.7
8 ∗ 2 1125525 7.97 1045120 0.26 1053698 1.08 1050006 0.73 1051067 0.83
10 ∗ 2 982253.7 7.69 914338.8 0.24 923719.8 1.27 918720.6 0.72 918928.8 0.74
5 ∗ 3 470054.9 10.71 426190.7 0.38 431085 1.53 428675.3 0.96 429987.6 1.27
8 ∗ 3 1294144 8.84 1192088 0.26 1204878 1.34 1200812 0.99 1202799 1.16
10 ∗ 3 537984.1 8.77 496077.9 0.30 502092.5 1.52 498725.9 0.84 498437.7 0.78
5 ∗ 4 418311.1 9.20 384177 0.29 387628.5 1.19 386523.2 0.91 387346.1 1.12
8 ∗ 4 230949 9.83 211052.3 0.37 213284.8 1.43 212079.6 0.86 212832 1.21
10 ∗ 4 383408.4 8.90 353263.5 0.33 357599.9 1.56 355466.5 0.96 356388.4 1.22
5 ∗ 5 173264.5 10.96 157079.4 0.56 158737.4 1.66 156880.2 0.47 158404.5 1.44
8 ∗ 5 514237.7 10.14 467843.6 0.21 474849 1.71 471759 1.05 473869.2 1.50
10 ∗ 5 554673.8 8.31 514401.7 0.45 518897.7 1.33 516644.2 0.89 518415 1.23
5 ∗ 6 339006.4 11.93 304192.4 0.44 308969.4 2.02 306773.8 1.29 308956 2.01
8 ∗ 6 204151.6 10.80 185056.2 0.44 187744.3 1.90 185890.9 0.89 186445.8 1.19
10 ∗ 6 252926.8 10.75 229300.7 0.40 234570 2.71 231703.7 1.45 231773.8 1.48
5 ∗ 7 159619.2 10.52 144825.4 0.28 146096.2 1.16 145332 0.63 146629 1.53
8 ∗ 7 476604.2 11.00 431179.5 0.42 434615.4 1.22 434547.7 1.20 434739.3 1.25
10 ∗ 7 214161.3 8.69 197772.4 0.37 200347.8 1.68 199427.2 1.21 199985.5 1.50
Mean 490075.0 9.7 450221.2 0.3 455224.3 1.5 452998.1 1.0 453941.5 1.3

300

5 ∗ 2 941746 9.29 866442.4 0.55 868704.8 0.82 863973.6 0.27 867898.8 0.72
8 ∗ 2 701815.7 10.38 637590.6 0.28 644705.4 1.40 640490.4 0.74 641406.7 0.88
10 ∗ 2 3132964 9.76 2858554 0.14 2886949 1.14 2876017 0.75 2879764 0.89
5 ∗ 3 379742.9 10.31 344559.6 0.09 347949.7 1.08 346370.1 0.62 347019.4 0.81
8 ∗ 3 467052.3 7.84 433953.2 0.20 437361 0.99 435883.9 0.64 436375 0.76
10 ∗ 3 579078.8 7.63 539634.8 0.30 543557.1 1.03 541669.2 0.68 542583.5 0.85
5 ∗ 4 337962.3 9.58 309215 0.26 310980.6 0.84 310369.7 0.64 310974.7 0.83
8 ∗ 4 567404 9.56 519665 0.34 523827.6 1.14 523011.4 0.98 523153.9 1.01
10 ∗ 4 740196.4 8.77 683043.1 0.37 690288.7 1.44 688216.2 1.13 689495.2 1.32
5 ∗ 5 376827.5 13.64 333888.5 0.69 339052.8 2.25 337795 1.87 338984.7 2.23
8 ∗ 5 475847.4 9.88 434119.3 0.24 437751.7 1.08 436857.7 0.87 437476.6 1.02
10 ∗ 5 1783114 9.33 1637294 0.38 1655810 1.52 1651494 1.26 1654953 1.47
5 ∗ 6 170936.2 11.17 154385.7 0.40 155873.7 1.37 155033.7 0.82 155863.6 1.36
8 ∗ 6 281307.5 10.57 255280.1 0.34 258539.6 1.62 257350.5 1.15 257870.1 1.36
10 ∗ 6 1003844 8.81 925541.9 0.33 935804.3 1.44 930918.9 0.91 934280.6 1.27
5 ∗ 7 371981.5 13.13 330188.1 0.42 335771.2 2.12 334103.1 1.61 335576 2.06
8 ∗ 7 635747.9 8.58 587767.1 0.39 594072.2 1.46 590398.7 0.84 592908.7 1.27
10 ∗ 7 723764.4 10.06 659553.4 0.30 668182.8 1.61 664044 0.98 667506.1 1.51
Mean 759518.5 9.9 694900.4 0.3 701954.6 1.4 699248.1 0.9 700782.8 1.2

400

5 ∗ 2 583960.7 10.54 529026.7 0.14 532437.1 0.79 531209.3 0.56 531056.6 0.53
8 ∗ 2 2461379 8.98 2262161 0.16 2276884 0.81 2271773 0.59 2273896 0.68
10 ∗ 2 1304584 8.10 1208548 0.14 1216008 0.76 1213446 0.55 1214174 0.61
5 ∗ 3 507808.4 10.23 461846 0.25 464953.4 0.92 463673 0.65 464849 0.90
8 ∗ 3 1275307 9.26 1169199 0.17 1179110 1.02 1175848 0.74 1177687 0.90
10 ∗ 3 1610226 9.37 1474477 0.15 1491004 1.27 1482670 0.71 1484177 0.81
5 ∗ 4 667321.8 10.45 605373.9 0.20 610239.5 1.00 608266.6 0.68 610083.6 0.98
8 ∗ 4 695785.6 10.90 628989.9 0.26 634453.3 1.13 632783.2 0.86 633322.9 0.95
10 ∗ 4 817006.2 9.34 749355.8 0.29 755522.8 1.11 754996.9 1.04 754738.4 1.01
5 ∗ 5 275469.9 10.95 248654.3 0.15 250493.7 0.89 249712.8 0.57 250306.3 0.81
8 ∗ 5 393290.6 9.49 359798.8 0.17 363531 1.20 362107.4 0.81 362714.9 0.98

(continued on next page)
15

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

5

s
t
o
w
h
s

3
r

Table 11 (continued).
Job m ∗ f DABC2018 VNIG IGR2020 ES2022 CRO2017

avg RPI avg RPI avg RPI avg RPI avg RPI

10 ∗ 5 1238094 9.68 1131174 0.21 1146014 1.52 1142242 1.19 1144837 1.42
5 ∗ 6 171631.6 11.37 154475.8 0.24 155874.6 1.15 155557 0.94 155896 1.16
8 ∗ 6 792043 9.65 725047.4 0.37 731225.4 1.23 729667.3 1.01 731034.8 1.20
10 ∗ 6 374784.4 9.18 343837.7 0.16 347231.1 1.15 345599 0.68 346391.3 0.91
5 ∗ 7 407196.8 13.63 359277.7 0.26 363750.3 1.50 362111.1 1.05 363950 1.56
8 ∗ 7 577463.9 8.94 531036.4 0.18 535927.2 1.11 533345.6 0.62 534897.5 0.91
10 ∗ 7 777184.7 9.82 709367.9 0.23 718819.4 1.57 715122.8 1.05 717131.8 1.33
Mean 829474.3 10.0 758424.9 0.2 765193.3 1.1 762785.1 0.8 763952.5 1.0

500

5 ∗ 2 1587790 11.70 1423683 0.16 1432393 0.77 1429787 0.59 1430610 0.65
8 ∗ 2 3548259 9.11 3255493 0.11 3278817 0.83 3272791 0.64 3271848 0.61
10 ∗ 2 1065611 7.86 988597.1 0.06 996233.2 0.84 993819.2 0.59 992573.9 0.47
5 ∗ 3 629016.4 12.66 559666.9 0.24 565092.4 1.21 562662.5 0.78 563104.1 0.86
8 ∗ 3 2025654 9.85 1846809 0.15 1867968 1.30 1855974 0.65 1858029 0.76
10 ∗ 3 2298302 8.60 2118682 0.11 2137671 1.01 2130157 0.66 2131341 0.71
5 ∗ 4 1162130 9.46 1063975 0.21 1072291 0.99 1068025 0.59 1071104 0.88
8 ∗ 4 1188833 8.37 1098679 0.15 1109251 1.12 1104385 0.67 1105630 0.79
10 ∗ 4 1740254 8.19 1611268 0.17 1624682 1.00 1619200 0.66 1620554 0.75
5 ∗ 5 497868.1 10.79 450191.4 0.18 452726.5 0.75 452125.5 0.61 452961.3 0.80
8 ∗ 5 1160409 9.10 1065147 0.15 1077804 1.34 1072625 0.85 1074600 1.04
10 ∗ 5 1738340 8.27 1608410 0.18 1620556 0.94 1617766 0.76 1620021 0.90
5 ∗ 6 1038196 12.77 923566.2 0.32 936114 1.68 929805.3 0.99 935445 1.61
8 ∗ 6 852840.8 10.07 776970.8 0.28 786746.4 1.54 783681.6 1.14 784754.3 1.28
10 ∗ 6 860416.1 8.34 795478.1 0.16 801955.9 0.98 798977 0.60 800601.9 0.81
5 ∗ 7 210182.3 11.91 188287.2 0.25 190179.5 1.26 189267.5 0.77 190131.9 1.24
8 ∗ 7 1068845 9.77 976054.1 0.24 986110.8 1.28 982685.1 0.92 985320.9 1.20
10 ∗ 7 828744.9 10.02 756043.4 0.37 766575.2 1.77 762206.9 1.19 764077.1 1.44
Mean 1305649.5 9.8 1194833.4 0.2 1205731.5 1.1 1 201441.1 0.8 1 202928.2 0.9
Fig. 7. Confidence intervals for the compared algorithms.
.7. Friedman test

Friedman test is a nonparametric test for the presence of
ignificant differences in multiple overall distributions [28]. This
est first assumes that multiple paired samples from multiple
verall distributions are not significantly different. The hypothesis
ill be accepted when the value of p is not less than 0.05. If the
ypothesis is rejected, the groups of samples are considered to be
ignificantly different.
We analyze 90 examples with situations of t = 2 and t = 3.

The results are shown in Tables 12–13. According to the Friedman
test (confidence level α = 0.050), the p value is 0.000, which indi-
cates that the compared algorithms are significantly different. By
observing the results, the rank values of our proposed algorithm
VNIG are the smallest (1.00 and 1.01). VNIG also had the smallest
mean values (0.285 and 0.311) and the smallest minimum values
(0.08 and 0.06). Meanwhile, the VNIG obtains the best standard
deviation values (0.1409 and 0.1569) and maximum values (0.79
and 0.84). From an overall perspective, we can deduce that the
VNIG is the most stable algorithm with CPU = 2 and CPU =

. And the VNIG demonstrates excellent performance in solving
esource-balance DBFSP_SDST problems.
16
Table 12
Results achieved by Friedman test (confidence level α = 0.050) when t = 2.
Algorithms Ranks CN Mean Std. Deviation Min Max

VNIG 1.00 90 0.285 0.1409 0.08 0.79
IGR 3.79 90 1.295 0.3357 0.71 2.40
DABC 5.00 90 10.135 1.1676 7.82 12.95
CRO 3.09 90 1.150 0.3889 0.61 2.37
ES 2.12 90 0.896 0.2327 0.35 1.66
p value 0.000

Table 13
Results achieved by Friedman test (confidence level α = 0.050) when t = 3.
Algorithms Ranks CN Mean Std. Deviation Min Max

VNIG 1.01 90 0.311 0.1569 0.06 0.84
IGR 3.81 90 1.325 0.3733 0.75 2.71
DABC 5.00 90 10.008 1.3894 7.63 14.10
CRO 3.12 90 1.700 1.4348 0.34 5.92
ES 2.07 90 0.915 0.2802 0.55 1.87
p value 0.000

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

6

f
c
m
a
s
b
a
s
e
i
p
M
l
d
a
t
s

D
s
a

Fig. 8. Evolutionary Curve for the compared algorithms.
. Conclusions

Most existing algorithms in the literature address the discrete
lowshop scheduling problem without considering the blocking
onstraint. Thus, in this study, we formulate the mathematic
odel of DBFSP_SDST with balanced energy cost and propose
local search with the learning_based variable neighborhood

earch strategy that seeds the initial solution using MME_en
ased on the MM strategy and NEH2_en. In the improved vari-
ble neighborhood search strategy (IVNS), three different local
earch methods are used to perturb the job sequence. In the
xperimental part, the effectiveness of the proposed strategies
s verified. The performance of the proposed algorithm is em-
irically evaluated on 90 instances of DBFSP_SDST. The proposed
ME_en and NEH2_en are compared, and the effectiveness of the

earning-based variable neighborhood strategy is verified. In ad-
ition, comparison results between the proposed VNIG algorithm
nd the existing four compared algorithms are reported. Through
he above simulation experiments, the proposed VNIG shows
uperior performance compared with state-of-the-art algorithms.
There are several opportunities for future research on

BFSP_SDST. First, the three local search strategies are randomly
elected in this study. It might be desirable to develop a self-
daptive mechanism to select the local search from them to
17
improve the exploration capability of the algorithm. Second, some
local search strategies can be developed to further reduce the
computational complexity of the algorithm. Third, uncertainties
related to machine breakdowns, wrong operations, and changes
in due date should also be considered when tackling DBFSP_SDST.
Last, to remedy the current unsatisfactory situation regarding the
experiment replication and comparison, the termination crite-
rion of an algorithm should be appropriately designed, such as
replacing the maximal elapsed CPU time with the number of
fitness evaluations, to fulfill the comparisons among heuristics
algorithms for the flowshop scheduling problem.

CRediT authorship contribution statement

Xue Han: Conception or design of the work, Acquisition, Anal-
ysis, Interpretation of data, Writing – original draft, Writing –
review & editing. Yuyan Han: Conception or design of the work,
Acquisition, Analysis, Interpretation of data, Writing – original
draft, Writing – review & editing. Biao Zhang: Writing – review
& editing, Interpretation of data. Haoxiang Qin: Writing – review
& editing, Interpretation of data. Junqing Li: Writing – review &
editing, Interpretation of data. Yiping Liu: Writing – review &
editing, Interpretation of data. Dunwei Gong: Writing – review
& editing, Interpretation of data.

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502

D

c
t

D

A

S
6
a
g
I
r
N
g
o
Z
p
i
a

A

o

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The authors do not have permission to share data.

cknowledgments

This work was jointly supported by the National Natural
cience Foundation of China under grant numbers 61803192,
2106073, 61973203, 61966012, 61773246, and 71533001. We
re grateful for Guangyue Youth Scholar Innovation Talent Pro-
ram support received from Liaocheng University, the Youth
nnovation Talent Introduction and Education Program support
eceived from Shandong Province Colleges and Universities, the
atural Science Foundation of Hunan Province of China under
rant number 2021JJ40116, and the Natural Science Foundation
f Shandong Province under grant numbers ZR2021QE195 and
R2021QF036. Xue Han has approved the final version to be
ublished and agrees to be accountable for all aspects of the work
n ensuring that questions related to the accuracy or integrity of
ny part of the work are appropriately investigated and resolved.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.asoc.2022.109502.

eferences

[1] J. Liang, Y. Wang, Z.H. Zhang, et al., Energy efficient production planning
and scheduling problem with processing technology selection, Comput.
Ind. Eng. 132 (2019) 260–270.

[2] R. Ruiz, B. Naderi, The distributed permutation flowshop scheduling
problem, Comput. Oper. Res. 37 (4) (2010) 754–768.

[3] Y. Han, J. Li, H. Sang, et al., Discrete evolutionary multiobjective optimiza-
tion for energy-efficient blocking flow shop scheduling with setup time,
Appl. Soft Comput. 93 (2020) 106343.

[4] S. Parthasarathy, C. Rajendran, An experimental evaluation of heuristics for
scheduling in a real-life flowshop with sequence-dependent setup times
of jobs, Int. J. Prod. Econ. 49 (3) (1997) 255–263.

[5] H. Guo, H. Sang, B. Zhang, L. Meng, L. Liu, An effective metaheuristic
with a differential flight strategy for the distributed permutation flowshop
scheduling problem with sequence-dependent setup times, Knowl.-Based
Syst. 242 (1) (2022) 108328.

[6] Korhan Karabulut, Hande Öztop, Damla Kizilay, M. Fatih Tasgetiren, Levent
Kandiller, An evolution strategy approach for the distributed permuta-
tion flowshop scheduling problem with sequence-dependent setup times,
Comput. Oper. Res. 142 (2) (2022) 105733.

[7] C.Y. Cheng, P. Pourhejazy, K.C. Ying, S.Y. Huang, New benchmark algo-
rithm for minimizing total completion time in blocking flowshops with
sequence-dependent setup times, Appl. Soft Comput. 104 (2021) 107229.

[8] M.A. Hakim Newton, V. Riahi, K. Su, A Sattar, Scheduling blocking flow-
shops with setup times via constraint guided and accelerated local search,
Comput. Oper. Res. 109 (2019) 64–76.

[9] J. Dong, C.M. Ye, Green scheduling of distributed two-stage reentrant
hybrid flow shop considering distributed energy resources and energy
storage system, Comput. Ind. Eng. 169 (2022) 108146.

[10] Z.Q. Zhang, B. Qian, R. Hu, et al., A matrix-cube-based estimation of
distribution algorithm for the distributed assembly permutation flow-shop
scheduling problem, Swarm Evol. Comput. 60 (2021) 100785.

[11] O.A. Arık, Artificial bee colony algorithm including some components of
iterated greedy algorithm for permutation flow shop scheduling problems,
Neural Comput. Appl. 33 (2021) 3469–3486.

[12] C. Lu, Q. Liu, B. Zhang, L.J. Yin, A Pareto-based hybrid iterated greedy
algorithm for energy-efficient scheduling of distributed hybrid flowshop,
Expert Syst. Appl. 204 (2022) 0957–4174.
18
[13] R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem, European J. Oper. Res. 177 (3)
(2007) 2033–2049.

[14] S. Hatami, R. Ruiz, C. Andres-Romano, Heuristics and metaheuristics for
the distributed assembly permutation flowshop scheduling problem with
sequence dependent setup times, Int. J. Prod. Econ. 169 (2015) 76–88.

[15] B. Naderi, R. Ruiz, A scatter search algorithm for the distributed permuta-
tion flowshop scheduling problem, European J. Oper. Res. 239 (2) (2014)
323–334.

[16] H. Bargaoui, O. Belkahla Driss, Khaléd Ghédira, A novel chemical reaction
optimization for the distributed permutation flowshop scheduling problem
with makespan criterion, Comput. Ind. Eng. 111 (2017) 239–250.

[17] V. Fernandez-Viagas, J.M. Framinan, A bounded-search iterated greedy
algorithm for the distributed permutation flowshop scheduling problem,
Int. J. Prod. Res. 53 (4) (2015) 1111–1123.

[18] R. Ruiz, Q.K. Pan, B. Naderi, Iterated Greedy methods for the distributed
permutation flowshop scheduling problem, Omega 83 (2019) 213–222.

[19] T. Meng, Q.K. Pan, L. Wang, A distributed permutation flowshop scheduling
problem with the customer order constraint, Knowl.-Based Syst. 184
(2019) 104894.1-104894.17.

[20] V. Fernandez-Viagas, P. Perez-Gonzalez, J.M. Framinan, The distributed
permutation flow shop to minimize the total flowtime, Comput. Ind. Eng.
118 (2018) 464–477.

[21] Q.K. Pan, L. Gao, L. Wang, et al., Effective heuristics and metaheuristics
to minimize total flowtime for the distributed permutation flowshop
problem, Expert Syst. Appl. 124 (2019) 309–324.

[22] Z.Q. Zhang, B. Qian, R. Hu, et al., A matrix-cube-based estimation of
distribution algorithm for the distributed assembly permutation flow-shop
scheduling problem, Swarm Evol. Comput. 60 (2021) 100785.

[23] S. Parthasarathy, C. Rajendran, An experimental evaluation of heuristics for
scheduling in a real-life flowshop with sequence-dependent setup times
of jobs, Int. J. Prod. Econ. 49 (3) (1997) 255–263.

[24] Mirabi Mohammad, Ant colony optimization technique for the sequence-
dependent flowshop scheduling problem, Int. J. Adv. Manuf. Technol. 55
(1–4) (2010) 317–326.

[25] R. Vanchipura, R. Sridharan, A.S. Babu, Improvement of constructive heuris-
tics using variable neighbourhood descent for scheduling a flow shop with
sequence dependent setup time, J. Manuf. Syst. 33 (1) (2014) 65–75.

[26] M.S. Nagano, H.H. Miyata, D.C. Araújo, A constructive heuristic for total
flowtime minimization in a no-wait flowshop with sequence-dependent
setup times, J. Manuf. Syst. 36 (2015) 224–230.

[27] A. Sioud, C. Gagne, Enhanced migrating birds optimization algorithm for
the permutation flow shop problem with sequence dependent setup times,
European J. Oper. Res. 264 (1) (2018) 66–73.

[28] J.P. Huang, Q.K. Pan, L. Gao, An effective iterated greedy method
for the distributed permutation flowshop scheduling problem with
sequence-dependent setup times, Swarm Evol. Comput. (2020) 100742.

[29] J.P. Huang, Q.K. Pan, Z.H. Miao, et al., Effective constructive heuristics and
discrete bee colony optimization for distributed flowshop with setup times,
Eng. Appl. Artif. Intell. 97 (2021) 104016.

[30] G. Zhang, K. Xing, F. Cao, Discrete differential evolution algorithm for
distributed blocking flowshop scheduling with makespan criterion, Eng.
Appl. Artif. Intell. 76 (2018) 96–107.

[31] Z. Shao, D. Pi, W. Shao, Hybrid enhanced discrete fruit fly optimization
algorithm for scheduling blocking flow-shop in distributed environment,
Expert Syst. Appl. 145 (2019) 113147.

[32] F. Zhao, L. Zhao, L. Wang, et al., An ensemble discrete differential evo-
lution for the distributed blocking flowshop scheduling with minimizing
Makespan criterion, Expert Syst. Appl. 160 (2020) 113678.

[33] S. Chen, Q.K. Pan, X.L. Hu, et al., An Iterated Greedy Algorithm for
Distributed Blocking Flowshop Problems with Makespan Minimization,
IEEE, 2020, pp. 1536–1541.

[34] J.J. Wang, L. Wang, A knowledge-based cooperative algorithm for energy-
efficiency scheduling of distributed flow-shop, IEEE Trans. Syst. Man
Cybern. Syst. (2018) 1–15.

[35] F.L. Rossi, M.S. Nagano, Heuristics and iterated greedy algorithms for the
distributed mixed no-idle flowshop with sequence-dependent setup times,
Comput. Ind. Eng. 157 (2021) 107337.

[36] J. Pan, W. Zou, J. Duan, A discrete artificial bee colony for distributed
permutation flowshop scheduling problem with total flow time minimiza-
tion, in: 2018 37th Chinese Control Conference, CCC, Wuhan, 2018, pp.
8379–8383.

[37] M. Mashaei, B. Lennartson, Energy reduction in a pallet-constrained flow
shop through on-off control of idle machines, IEEE Trans. Autom. Sci. Eng.
10 (1) (2013) 45–56.

https://doi.org/10.1016/j.asoc.2022.109502
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb31
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb31
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb31
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb31
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb31
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb37

X. Han, Y. Han, B. Zhang et al. Applied Soft Computing 129 (2022) 109502
[38] O. Masmoudi, A. Yalaoui, Y. Ouazene, et al., Lot-sizing in flow-shop
with energy consideration for sustainable manufacturing systems, IFAC
Papersonline 48 (3) (2015) 727–732.

[39] Tang. D., Min. D., M.A. Salido, et al., Energy-efficient dynamic scheduling
for a flexible flow shop using an improved particle swarm optimization,
Comput. Ind. 81 (2016) 82–95.

[40] O. Masmoudi, A. Yalaoui, Y. Ouazene, et al., Solving a capacitated flow-shop
problem with minimizing total energy costs, Int. J. Adv. Manuf. Technol.
90 (2017) 2655–2667.

[41] G. Wang, X. Li, L. Gao, et al., An effective multiobjective whale swarm
algorithm for energy-efficient scheduling of distributed welding flow shop,
Ann. Oper. Res. 310 (2022) 223–255.

[42] X.L. Ding, J. Zhu, C. Liu, Lagrangian relaxation algorithms for hybrid flow-
shop scheduling problems with energy saving, Adv. Mater. Res. 997 (2014)
821–826.

[43] G. Wang, X. Li, L. Gao, et al., A multi-objective whale swarm algorithm for
energy-efficiency distributed permutation flow shop scheduling problem
with sequence dependent setup times, IFAC-PapersOnLine 52 (13) (2019)
235–240.
19
[44] Chen. J.F.A., Wang. L.A., Peng. Z.P.B., A collaborative optimization algo-
rithm for energy-efficiency multiobjective distributed no-idle flow-shop
scheduling, Swarm Evol. Comput. 50 (4) (2019) 100557.

[45] H.B. Song, J. Lin, A genetic programming hyperheuristic for the distributed
assembly permutation flow-shop scheduling problem with sequence
dependent setup times, Swarm Evol. Comput. 60 (2021) 100807.

[46] Y.Z. Li, Q.K. Pan, K.Z. Gao, et al., A green scheduling algorithm for the
distributed flowshop problem, Appl. Soft Comput. 109 (2021) 107526.

[47] X. Han, Y. Han, Q.-d. Chen, J.-q. Li, H.-y. Sang, Y.-p. Liu, Q.-k. Pan, Y. Nojima,
Distributed flow shop scheduling with sequence-dependent setup times
using an improved iterated greedy algorithm, Complex Syst. Model. Simul.
1 (3) (2021) 198–217.

[48] H. Qin, Y. Han, B. Zhang, L. Meng, Y. Liu, Q. Pan, D. Gong, An improved
iterated greedy algorithm for the energy-efficient blocking hybrid flow
shop scheduling problem, Swarm Evol. Comput. 69 (2021) 100992.

[49] K. Karabulut, D. Kizilay, M.F. Tasgetiren, L. Gao, Levent Kandiller, An evo-
lution strategy approach for the distributed blocking flowshop scheduling
problem, Comput. Ind. Eng. 163 (2022) 107832.

http://refhub.elsevier.com/S1568-4946(22)00592-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb42
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb42
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb42
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb42
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb42
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb43
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb44
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb44
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb44
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb44
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb44
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb45
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb45
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb45
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb45
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb45
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb46
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb46
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb46
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb47
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb48
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb49
http://refhub.elsevier.com/S1568-4946(22)00592-0/sb49

	An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion
	Introduction
	Literature review
	DBFSPSDST with balanced energy costs criterion
	Iterative greedy algorithm with a variable neighborhood search strategy
	Initial solution (MMEen)
	Effective local search strategies
	Improved variable neighborhood search strategies

	Experiments and analysis
	Experiment settings
	Verification of the MILP model
	Parameters calibration
	Comparison of the results of NEH2en and MMEen
	Validation of the effectiveness of the variable neighborhood search strategy based on the learning method
	Comparison results between the VNIG algorithm and the five compared algorithms
	Friedman test

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

