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a b s t r a c t 

With the continuous development of national economies, problems of various energy consumption levels and pol- 

lution emissions in manufacturing have attracted attention from researchers. Most existing research has focused 

on reducing economic costs and energy consumption. However, the Hybrid Flow Shop Scheduling Problem with 

energy-efficient criteria has not yet been well studied, especially with blocking constraints. This paper is the first 

to present a mathematical model of the blocking hybrid flow shop problem with an energy-efficient criterion and 

a modified Iterative Greedy algorithm based on a swap strategy designed to optimize the constructed model. In 

the proposed algorithm, first, a heuristic is adopted to generate the initial solution. Second, a local perturbation 

strategy based on a swap operator is designed to ensure the convergence of the algorithm. Third, a simple global 

perturbation strategy based on a half-swap operator is proposed as a means to further search for the potentially 

best solution with the traditional simulated annealing criterion. The proposed algorithm is applied to 150 test 

instances at different scales and compared to state-of-the-art algorithms. The experimental results demonstrate 

that the proposed algorithm outperforms the compared algorithms and can obtain a better solution. 
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. Introduction 

Under pressures of global warming and continuous competition

mong enterprises, energy-efficient manufacturing that aims to increase

roduction efficiency and decrease energy wastage is attracting increas-

ng attention [1] . In the manufacturing industry, scheduling is an im-

ortant problem that directly affects the production efficiency and en-

rgy consumption of enterprises. It is necessary to establish a reason-

ble calculation model and to design an efficient scheduling optimiza-

ion method that can improve the production efficiency of enterprises

nd reduce environmental pollution. The Flow Shop Scheduling Prob-

em (FSP) is a commonly experienced optimization problem in many

nterprises, and it has been proven to be an NP-hard problem [2] . 

The Hybrid Flow Shop Scheduling Problem (HFSP) is a more com-

lex optimization problem than the FSP; covers all characteristics of

he FSP and is commonly used in steelmaking and refining [3] , film

ransistor-liquid crystal displays [4] , semiconductor wafer fabrication

acilities [5] and other production processes. For the HFSP, a collection

f jobs must pass through all stages of the workshop, and the process of

ach job is independent. Unlike the FSP, the HFSP overcomes the unique
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onstraints of machines; that is, in any processing stage, each job can be

rocessed on one parallel machine. This setting of parallel machines can

ncrease the productivity and flexibility of the scheduling process [6] . In

roduction settings, due to limitations of storage capacity or technical

onstraints [7] , when a job is finished in a certain stage and machines

or the next stage are not available, the job must remain at the current

achine until one of the machines of the next stage is available [ 8 , 9 ].

his situation is often called job blocking. The existence of blocking in

achines prolongs the wait times of jobs and causes unnecessary energy

astage; thus, the blocking constraint reduces the processing efficiency

f the job sequence. It is evident that for job sequences of different scales,

he difference in job sequencing will cause different degrees of blocking.

his arrangement can improve the production efficiency of the manufac-

uring industry and reduce energy wastage by applying an optimal job

equencing sequence as effectively as possible, mitigating the blocking

roblem caused by the absence of a buffer. 

At present, many metaheuristic algorithms have been developed for

olving FSP with blocking constraints, such as the Hybrid Multiobjec-

ive Artificial Bee Colony [10] , the Evolutionary Multiobjective Robust

cheduling algorithm [11] , the Iterated Greedy (IG) algorithm [ 12 , 13 ],
ber 2021 
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D  
he Hybrid Enhanced Discrete Fruit Fly Optimization algorithm [14] ,

iscrete Invasive Weed Optimization [15] and the Discrete Gravita-

ional Search Algorithm [16] . All of the above algorithms are used

o solve the FSP with blocking constraints. However, these algorithms

o not design corresponding methods for the HFSP with blocking con-

traints. In view of this, this paper studies means to reduce the energy

onsumption of the Blocking Hybrid Flow Shop Scheduling Problem

BHFSP). 

The IG algorithm has been proven to be an effective method for solv-

ng the FSP [17] . The IG algorithm with blocking constraints also shows

ood performance relative to many algorithms [ 18 , 19 ]. Some typical

dvantages of the IG algorithm are that (1) the algorithm has a simple

tructure with few parameters and can integrate constructive heuris-

ic and metaheuristic algorithms into its framework. (2) Unlike existing

warm intelligence algorithms, the IG algorithm generates only one so-

ution in each iteration so it can focus on a deeper exploration of a solu-

ion. (3) The IG algorithm can arrange a job in an appropriate manner

s much as possible through the local perturbation of the job sequence,

ffectively reducing energy wasted due to the blocking of the job se-

uence. Based on the advantages of the IG algorithm and job blocking

roblems, we propose an improved Iterative Greedy algorithm based

n swap (IGS) to solve the above BHFSP. In the IGS, two perturbation

trategies are designed to improve the local and global search abilities

f this solution to reduce the impact of blocking constraints on the job

equence. 

Our algorithm is the preferred choice when solving the HFSP with

locking constraints, since our algorithm is particularly designed to

olve such a problem. This would be also a limitation of our algorithm.

hat is, our algorithm may be not the best choice to solve the HFSP

ithout blocking constraints. According to the above description, the

ontributions of this paper are as follows: 

1) In real-world production, the blocking of jobs and machine idleness

always lead to increased energy consumption. However, to the best

of our knowledge, the BHFSP with energy consumption has not yet

been well studied. Therefore, this paper makes a strategy design for

blocking constraints and uses it to reduce the invalid processing of

the machine. Then, this paper constructs the mathematical model

of the BHFSP with energy consumption criteria to satisfy scheduling

demands. 

2) The strategies proposed in this paper are particularly designed to

handle job blocking constraints. To exploit promising subregions and

explore irregular unknown regions, in the earlier stages of iteration,

the MinMax and Nawaz, Enscore and Ham (MME) heuristic algo-

rithm is used to reduce the impact of blocking on the job sequence.

In the later stages, two perturbation strategies are designed to bal-

ance the local and global search ability of the proposed algorithm. By

disturbing the blocking jobs, the energy consumption is effectively

reduced. 

3) To handle the blocking problems of job sequences and improve the

iterative performance of the algorithm for large-scale operations, lo-

cal perturbation strategies based on swap are proposed as a means to

improve the local search ability of the solution. Because blocked jobs

may vary with changes in job sequences, local perturbation strate-

gies based on swap effectively change the positions of blocked jobs.

The strategy proposed in this paper can be executed more times due

to its lower complexity. It can quickly disturb the job sequence, sim-

plifying the iterative process and reducing energy wastage. 

4) To further disturb the blocked jobs and change the jobs order, a

global perturbation strategy based on a half-swap is proposed in

consideration of the conditions of the local optimum and the diver-

sity of the solution. The proposed strategy can effectively adjust the

arrangement of the current blocked job sequence, and improve the

global search ability of the algorithm for the individuals of each gen-
eration. t  

2 
The remainder of this paper is organized as follows. After a brief

ntroduction provided in Sections 1 , 2 presents a literature review.

ection 3 describes the scheduling problem of the energy-efficient

HFSP. In Section 4 , an IGS is developed to obtain the above mathe-

atical model. Section 5 analyzes the experimental results. Finally, a

ummary of this paper and avenues for future work are presented in

ection 6 . 

. Literature review 

.1. HFSPs 

Several exact algorithms have been proposed as tools used to solve

he HFSP, including the branch and bound algorithm [ 24 , 25 ] and La-

rangian relaxation algorithm [ 26 , 27 ]. However, for a large-scale HFSP,

t is difficult to solve such problems with exact algorithms. Heuristic,

etaheuristic and hybrid heuristic algorithms have become scholars’

avored means to solve such problems [28] . The following section pro-

ides a review of these algorithms. 

Intelligent optimization algorithms are generally divided into heuris-

ic and metaheuristic algorithms to solve the FSP [21] . The Nawaz–

nscore–Ham (NEH) constructive heuristic was first designed to solve

he FSP [22] . Later, McCormick et al. [23] proposed profile fitting to

inimize blocking and idle times of the job sequence. Ronconi [20] de-

eloped the MME constructive heuristic for the FSP with blocking con-

traints. The above heuristic methods show superior performance in ini-

ializing a solution. Thus, the methods are embedded into the initializa-

ion stage. 

More recent studies on metaheuristics have also been conducted. Ne-

ati et al. used the genetic algorithm (GA) to minimize the weighted

ompletion time of the HFSP with a work shift constraint; the advantage

ies in the algorithm’s quick response to demands based on substantial

treaming and machine utilization to adjust the sequencing problem.

29] . Pan et al. proposed a Discrete Artificial Bee Colony (DABC) to min-

mize the makespan of the HFSP [30] where a new control parameter is

ntroduced into the algorithm to balance the abilities of local exploita-

ion and global exploration. Zhang et al. [31] presented an Effective

odified Migrating Bird Optimization (EMBO) algorithm to solve the

FSP. In EMBO, two competitive mechanisms are used to increase the

robability of locating better solutions and to enhance the interactions

etween two lines. Li et al. [32] proposed the Hybrid Variable Neigh-

orhood Search (VNS) method, which combines Chemical-Reaction Op-

imization and the Estimation of Distribution algorithm in solving the

FSP. Later, Liu et al. [33] presented a hybrid EDA-DE algorithm that

ombines the Estimation of Distribution algorithm with the Differential

volution algorithm to solve the HFSP. 

In addition, for the optimization of energy consumption, Tao et al.

28] were the first to consider energy consumption and resource con-

traints and proposed the Discrete Imperialist Competitive algorithm

ICA) for solving the HFSP with a makespan objective. Marichelvam

t al. proposed a Discrete Particle Swarm Optimization (DPSO) algo-

ithm that is hybridized with the VNS method to reduce energy con-

umption for a flexible FSP [34] . Similarly, the Nondominated Sorti3ng

enetic Algorithm-II is adopted to solve the flexible job shop problem

ith energy consumption objectives [35] , which can effectively select

 suitable machine for each operation and undertake rational operation

equencing simultaneously without the interference of subjective fac-

ors. Later, Lei et al. proposed a two-phase metaheuristic based on the

CA and VNS to solve the flexible job shop scheduling problem with an

nergy consumption threshold [36] . 

.2. IG algorithm 

The IG algorithm is a simple and effective optimization algorithm.

ue to its simple structure and embeddability, the algorithm has at-

racted much attention from researchers in manufacturing scheduling
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Table 1 

Advantages and limitations of the algorithms. 

Advantages Limitations 

GA [29] The structure is simple, and in the same amount of termination time, 

the algorithm can iterate many times more than other algorithms, and 

the diversity of the solutions is good. 

Due to using too many iterations, the local neighborhood of a single 

solution is not sufficiently explored. 

DABC 

[30] 

The three-layer structure is simple and clear. In the iterative process, 

the new solution is used to replace the worst solution of the population 

to improve the overall quality of the population. 

Similarly, the exploration ability of the single solution is not sufficient. 

EMBO 

[31] 

The local and global search abilities of the algorithm are widely 

considered, and the algorithm combines the advantages of the DABC 

and GA algorithms. 

The algorithm has a more complex structure and more parameters, 

necessitating extensive parameter adjustment efforts. 

DPSO 

[34] 

In this paper, the initialization strategy and subsequent iteration 

operation are shown to better balance the global and local search 

abilities of the algorithm. 

With more parameters, the implementation process is more complicated 

than that of other swarm algorithms. 

IGA 

[17] 

The algorithm’s structure is simple, the operation of only one solution 

can achieve a greater degree of exploration, and local search ability is 

strong. 

The operation of a single solution is not conducive to maintaining 

solution diversity, global search ability is weak, the algorithm easy to 

falls into the local optimal. 

IGRS 

[46] 

The algorithm has fewer parameters and a simple structure. Compared 

to the traditional IG algorithm, this algorithm achieves better local 

solution exploration. 

Local searches are not highly effective at improving the global search 

ability of the solution, and the algorithm easily falls into the local 

optimal. 

IGT 

[46] 

Compared to other IG algorithms, global search ability is improved, and 

fewer parameters are applied. 

RIS and RSS policies are complex, and their execution takes a 

considerable amount of time. 

IGTALL 

[46] 

The IGT algorithm is further optimized after the destruction strategy, 

and the local search ability of the algorithm is further improved. 

Local search ability is further strengthened, which reduces the 

exploration of global scope and causes the algorithm to easily fall into 

the local optimum. 

VBIH 

[46] 

Performing operations on blocks can reduce damage to the current 

good sequence and improve local search ability. 

The algorithm takes more time to execute an iterative process and the 

irregular unknown regions of the solution are not sufficiently explored. 
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elds. After Ruben and Thomas first used the algorithm to solve the FSP

17] , a series of improved IG algorithms were applied to solve the FSP.

or the makespan criterion of the no-wait FSP, Ding et al. [37] proposed

 tabu-based reconstruction strategy to enhance the exploration abilities

f the IG algorithm. Next, Huang et al. modified the IG algorithm by

sing six different operators to solve the distributed permutation FSP

38] . Fernandez-Viagas et al. adopted IG-based algorithms with beam

earch initialization to minimize the overall tardiness of the FSP [39] .

chi and Driss proposed the Bounded-Search IG algorithm for solving

he Distributed Assembly Permutation Flow Shop Scheduling Problem

DAPFSP) [40] . Similarly, Huang et al. proposed an improved IG algo-

ithm based on group think as a means to solve the DAPFSP [41] . 

To the best of our knowledge, there have been few studies on the use

f the IG algorithm for solving the HFSP. We note the following related

tudies. Ying [42] proposed an IG algorithm for solving the HFSP with

ultiprocessor tasks. Rodriguez et al. used the IG algorithm to solve the

arge-scale unrelated parallel machine scheduling problem [43] . Shao

t al. [44] used the IG algorithm to solve the distributed HFSP with

 makespan objective. Fbo and Ms [45] proposed an IG search meta-

euristic that minimizes the makespan of the HFSP encountered in a

anufacturing plant with sequence-dependent setup times. Ztop et al.

46] designed a series of strategies and four IG variants, i.e., IGRS, IGT,

GTALL, and VBIH algorithms, to solve the HFSP. These variants have

hown good performance in the literature. From experimental results,

he IG algorithm shows good performance in various studies in solving

FSP. 

.3. The motivation of the proposed IGS 

According to the above algorithms, we select nine representative

lgorithms related to our considered problem and state their advan-

ages and limitations in Table 1 . Through a comparative analysis of al-

orithms, we find that swarm intelligence algorithms, i.e., GA, DABC,

MBO, and DPSO, include more parameters and complicated structures.

t the same time, the algorithms can provide multiple solutions that

re helpful in improving the diversity of solutions. However, in the ex-

loration of a single solution neighborhood, these swarm intelligence

lgorithms are slightly less effective than the IG algorithm. In actual

roduction, we often only need an optimal scheduling scheme, which

equires this scheduling scheme to minimize the optimal objective value
3 
s much as possible. Compared to traditional swarm intelligence algo-

ithms, the improved IG algorithm can more intensively explore a single

olution and is very effective at improving the reinforcement of the solu-

ion. According to the description of the advantages of the IG algorithm

rovided in the introduction and the current status of research prob-

ems, this paper identifies further improvements on the basis of the IG

lgorithm. 

The studies conducted adopt a series of IG algorithms to solve the

FSP, demonstrating good results in local neighborhood exploration.

owever, it is difficult to have the solution jump out of the search range

nd reduce the diversity of the solution using local neighborhood ex-

loration alone. The iterative improvement strategy of the traditional

G algorithm shows excellent performance in solving small-scale prob-

ems. However, with the continuous expansion of the job sequence, the

dvantages of the iterative improvement strategy gradually decline. Be-

ause this strategy is based on the insertion operation, the operation

s more complex than the swap strategy. Therefore, if the termination

ime is the same, the number of insert operations will be lower than the

umber of swap operations, which will reduce the number of algorithm

terations and make it difficult to change the relative position of the job

equence. As a result, the improvement in job blocking is not obvious,

nd the solution easily falls into a local optima. 

To avoid the above result, this paper proposes a local perturbation

trategy based on swap to replace the iterative improvement strategy

f the traditional IG algorithm. The proposed strategy can better solve

arge-scale problems. In addition, the traditional IG algorithm only uses

he criterion of simulated annealing to improve the diversity of the solu-

ion, and this criterion has not been found to greatly improve the diver-

ity of this solution after simulation testing [38] . Therefore, this paper

esigns a new global perturbation strategy for the original simulated

nnealing criterion to explore the solution across a broader range. In

ddition, the strategy can more effectively perturb the job sequence,

mprove the global search ability of the solution, and further reduce

he impact of blocking constraints on the energy consumption of jobs,

otivating our design of new strategies based on the IG algorithm. 

. Energy-efficient BHFSP 

The related notation of BHFSP is given as follows: 
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sup { 𝑀 , 𝐸 } = sup {13 , 10} = 13 ; 
𝐽 : The total number of jobs, indexed by 𝑗 = 1 , 2 , … , 𝐽 . 

𝑆: The total number of stages, indexed by 𝑠 = 1 , 2 , ..., 𝑆. 
𝑀 𝑠 : The number of identical parallel machines in stage 𝑠 ; 𝑀 𝑠 =

{1 , ..., 𝑚, ..., 𝑀 𝑠 } . 
𝑀 

𝐼𝑑𝑙𝑒 
𝑠,𝑚 

: The available time of machine 𝑚 in stage 𝑠 . 

𝑝 𝑠,𝑗 : The processing time of job 𝑗in stage 𝑠 . 

𝐵 𝑠,𝑗 : The start time of job 𝑗in stage 𝑠 . 

𝐸 𝑠,𝑗 : The end time of job 𝑗in stage 𝑠 . 

𝐵𝑙𝑜𝑐 𝑘 𝑠,𝑗 : The blocking time of job 𝑗in stage 𝑠 . 

𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 : The number of machines with job 𝑗processing in the preced-

ing stage 𝑠 − 1 , 𝑠 = 2 , ...𝑆. 

𝑚 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : The number of machines with job 𝑗processing in the current

stage 𝑠 . 

𝑃 𝑃 𝑟𝑜𝑐𝑒𝑠𝑠 
𝑠,𝑚 

: The power of machine 𝑚 in stage 𝑠 processing a job per unit

of time. 

𝑃 𝐼𝑑𝑒𝑙 
𝑠,𝑚 

: The power of machine 𝑚 in stage 𝑠 remaining in the idle state

per unit of time. 

𝑃 𝐵𝑙𝑜𝑐𝑘 
𝑠,𝑚 

: The power of machine 𝑚 in stage 𝑠 remaining in the block state

per unit of time. 

𝑋 𝑗,𝑚 = 

{ 

1 𝑇 ℎ 𝑒 𝑗𝑜 𝑏 𝑗 𝑖 𝑠 𝑎𝑟𝑟𝑎𝑛𝑔𝑒 𝑑 𝑡 𝑜 𝑏 𝑒 𝑝𝑟𝑜𝑐 𝑒𝑠𝑠𝑒 𝑑 𝑜 𝑛 𝑚𝑎𝑐 ℎ𝑖𝑛 𝑒 𝑚 

0 𝑂𝑡ℎ𝑒𝑟 𝑠 

The BHFSP contains a set of S stages in which one or more identical

arallel machines are arranged for each stage. At least one stage uses

ore than one machine. A sequence of n jobs must traverse through all

tages consecutively. Once a job is completed in the current stage, it

ust be transferred to the next stage for processing. In contrast to the

FSP, no intermediate buffers exist for any adjacent machines for the

HFSP considered in this paper. Thus, it is necessary to consider the

dle and blocking time of each machine over two key steps: machine

ssignment for each job and the allocation of collections of jobs to the

elected machines. In addition to the above constraints, the BHFSP is

ubject to the following eight constraints: 

1) All machines and jobs are available at time zero. 

2) Both the idle time and blocking time of machines are considered. 

3) Each job passes through all stages, and at a specific stage, a job is

performed by exactly one machine at a time. 

4) At any given time, each machine can process at most one job, and

each job can be processed on at most one machine. 

5) All jobs should be continuously processed and not preempted or in-

terrupted. 

6) No intermediate buffers exist for adjacent machines. 

7) A completed job must be immediately transported to the next stage.

If there is no available machine at the next stage, the job will be

blocked on the current machine until the next downstream machine

is available for processing. 

8) Both the transportation time and setup time are included in the pro-

cessing time. 

To more clearly describe the difference between the HFSP and

HFSP, a simple example is given. Suppose that the processing times

f each job in 3 stages are {3,10,1}, {5,7,6}, {5,3,3}, {5,4,7}, {8,3,7},

nd {4,7,3}. Each stage involves two identical parallel machines. 

As shown in Fig. 1 ., when there are sufficient buffers between adja-

ent machines, the completion time of the HFSP equals 28. However, for

he no-buffer case, the completion time of the BHFSP is increased to 30.

his is the case because some jobs are blocked on the current machine

ntil the next downstream machine is available for processing; i.e., be-

ause machines 3 and 4 are not available 8 times, job 3 is blocked on

achine 1 (denoted by the shaded rectangle). 

The blocking constraint increases the manufacturing time. Thus, we

re encouraged to research the BHFSP and reduce the blocking time.

irst, we construct a mathematical model of the BHFSP, and then we

rovide an example of the calculation process of the makespan to more

learly describe the process. 
4 
Let a job permutation 𝜋= {1 , 2 , 3 , 4 , 5 , 6} represent the sequence of
obs to be processed, and let the processing time of each job be as fol-
ows: 

𝑝 𝑠,𝑗 
]
3×6 = 

⎡ ⎢ ⎢ ⎣ 
𝑝 1 , 1 𝑝 1 , 2 𝑝 1 , 3 𝑝 1 , 4 𝑝 1 , 5 𝑝 1 , 6 
𝑝 2 , 1 𝑝 2 , 2 𝑝 2 , 3 𝑝 2 , 4 𝑝 2 , 5 𝑝 2 , 6 
𝑝 3 , 1 𝑝 3 , 2 𝑝 3 , 3 𝑝 3 , 4 𝑝 3 , 5 𝑝 3 , 6 

⎤ ⎥ ⎥ ⎦ = 
⎡ ⎢ ⎢ ⎣ 
3 5 5 5 8 4 
10 7 3 4 3 7 
1 6 3 7 7 3 

⎤ ⎥ ⎥ ⎦ 
According to the mathematical model given above, the calculation

f machine availability time and the completion time of every job is as

ollows: 

1) 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 } = inf {0 , 0} = 0 ; 𝐵 1 , 1 = 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 0 ; 𝐸 1 , 1 =

𝐵 1 , 1 + 𝑝 1 , 1 = 0 + 3 = 3 ; 

𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 𝐸 1 , 1 = 3 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 } = inf {0 , 0} = 0 ; 𝐵 2 , 1 = sup { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝐸 1 , 1 } =

sup {0 , 3} = 3 ; 𝐸 1 , 1 = 𝐵 2 , 1 = 3 ; 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 𝐸 1 , 1 = 3 ; 𝐸 2 , 1 = 𝐵 2 , 1 + 𝑝 2 , 1 =

3 + 10 = 13 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = 𝐸 2 , 1 = 13 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 
2) 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 } = inf {0 , 0} = 0 ; 𝐵 3 , 1 = sup { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝐸 2 , 1 } = 

sup {0 , 13} = 13 ; 

𝐸 2 , 1 = 𝐵 3 , 1 = 13 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = 𝐸 2 , 1 = 13 ; 𝐸 3 , 1 = 𝐵 3 , 1 + 𝑝 3 , 1 = 1 3 + 1 = 14 ;

𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = 𝐸 3 , 1 = 14 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 } = inf {3 , 0} = 0 ; 𝐵 1 , 2 = 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 0 ; 𝐸 1 , 2 = 

𝐵 1 , 2 + 𝑝 1 , 2 = 0 + 5 = 5 ; 

𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 𝐸 1 , 2 = 5 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 } = inf {13 , 0} = 0 ; 𝐵 2 , 2 = 

sup { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 , 𝐸 1 , 2 } = sup {0 , 5} = 5 ; 

𝐸 1 , 2 = 𝐵 2 , 2 = 5 ; 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 𝐸 1 , 2 = 5 ; 𝐸 2 , 2 = 𝐵 2 , 2 + 𝑝 2 , 2 = 5 + 7 = 12 ;

𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = 𝐸 2 , 2 = 12 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 } = inf {14 , 0} = 0 ; 𝐵 3 , 2 = 

sup { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 , 𝐸 2 , 2 } = sup {0 , 12} = 12 ; 

𝐸 2 , 2 = 𝐵 3 , 2 = 12 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = 𝐸 2 , 2 = 12 ; 𝐸 3 , 2 = 𝐵 3 , 2 + 𝑝 3 , 2 = 12 + 6 = 

18 ; 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 = 𝐸 3 , 2 = 18 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 } = inf {3 , 5} = 3 ; 𝐵 1 , 3 = 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 3 ; 𝐸 1 , 3 = 

𝐵 1 , 3 + 𝑝 1 , 3 = 3 + 5 = 8 ; 

𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 𝐸 1 , 3 = 8 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 } = inf {13 , 12} = 12 ; 𝐵 2 , 3 = 

sup { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 , 𝐸 1 , 3 } = sup {12 , 8} = 12 ; 

𝐸 1 , 3 = 𝐵 2 , 3 = 12 ; 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 𝐸 1 , 3 = 12 ; 𝐸 2 , 3 = 𝐵 2 , 3 + 𝑝 2 , 3 = 12 + 3 = 

15 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = 𝐸 2 , 3 = 15 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 } = inf {14 , 18} = 14 ; 𝐵 3 , 3 = 

sup { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝐸 2 , 3 } = sup {14 , 15} = 15 ; 

𝐸 2 , 3 = 𝐵 3 , 3 = 15 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = 𝐸 2 , 3 = 15 ; 𝐸 3 , 3 = 𝐵 3 , 3 + 𝑝 3 , 3 = 15 + 3 = 

18 ; 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = 𝐸 3 , 3 = 18 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 } = inf {8 , 5} = 5 ; 𝐵 1 , 4 = 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 5 ; 𝐸 1 , 4 =

𝐵 1 , 4 + 𝑝 1 , 4 = 5 + 5 = 10 ; 

𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 𝐸 1 , 4 = 10 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 } = inf {13 , 15} = 13 ; 𝐵 2 , 4 =

𝐼𝑑𝑙𝑒 

2 , 2 1 , 4 
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𝐸 1 , 4 = 𝐵 2 , 4 = 13 ; 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 𝐸 1 , 4 = 13 ; 𝐸 2 , 4 = 𝐵 2 , 4 + 𝑝 2 , 4 = 13 + 4 = 

17 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = 𝐸 2 , 4 = 17 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 } = inf {18 , 18} = 18 ; 𝐵 3 , 4 =

sup { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝐸 2 , 4 } = sup {18 , 17} = 18 ; 

𝐸 2 , 4 = 𝐵 3 , 4 = 18 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = 𝐸 2 , 4 = 18 ; 𝐸 3 , 4 = 𝐵 3 , 4 + 𝑝 3 , 4 = 18 + 7 = 

25 ; 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = 𝐸 3 , 4 = 25 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 } = inf {12 , 13} = 12 ; 𝐵 1 , 5 = 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 12 ;

𝐸 1 , 5 = 𝐵 1 , 5 + 𝑝 1 , 5 = 12 + 8 = 20 ; 

𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 𝐸 1 , 5 = 20 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 } = inf {18 , 15} = 15 ; 𝐵 2 , 5 =

sup { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 , 𝐸 1 , 5 } = sup {15 , 20} = 20 ; 

𝐸 1 , 5 = 𝐵 2 , 5 = 20 ; 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 = 𝐸 1 , 5 = 20 ; 𝐸 2 , 5 = 𝐵 2 , 5 + 𝑝 2 , 5 = 20 + 3 = 

23 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = 𝐸 2 , 5 = 23 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 } = inf {25 , 18} = 18 ; 𝐵 3 , 5 =

sup { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 , 𝐸 2 , 5 } = sup {18 , 23} = 23 ; 

𝐸 2 , 5 = 𝐵 3 , 5 = 23 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = 𝐸 2 , 5 = 23 ; 𝐸 3 , 5 = 𝐵 3 , 5 + 𝑝 3 , 5 = 23 + 7 = 

30 ; 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 = 𝐸 3 , 5 = 30 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
1 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 } = inf {20 , 13} = 13 ; 𝐵 1 , 6 = 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 13 ;

𝐸 1 , 6 = 𝐵 1 , 6 + 𝑝 1 , 6 = 13 + 4 = 17 ; 

𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 𝐸 1 , 6 = 17 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 2 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 } = inf {18 , 23} = 18 ; 𝐵 2 , 6 =

sup { 𝑀 

𝐼𝑑𝑙𝑒 
2 , 2 , 𝐸 1 , 6 } = sup {18 , 17} = 18 ; 

𝐸 1 , 6 = 𝐵 2 , 6 = 18 ; 𝑀 

𝐼𝑑𝑙𝑒 
1 , 2 = 𝐸 1 , 6 = 18 ; 𝐸 2 , 6 = 𝐵 2 , 6 + 𝑝 2 , 6 = 18 + 7 = 

25 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = 𝐸 2 , 6 = 25 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

1) 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = inf { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝑀 

𝐼𝑑𝑙𝑒 
3 , 2 } = inf {25 , 30} = 25 ; 𝐵 3 , 6 =

sup { 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 , 𝐸 2 , 6 } = sup {25 , 25} = 25 ; 

𝐸 2 , 6 = 𝐵 3 , 6 = 25 ; 𝑀 

𝐼𝑑𝑙𝑒 
2 , 1 = 𝐸 2 , 6 = 25 ; 𝐸 3 , 6 = 𝐵 3 , 6 + 𝑝 3 , 6 = 25 + 3 = 

28 ; 𝑀 

𝐼𝑑𝑙𝑒 
3 , 1 = 𝐸 3 , 6 = 28 ; 𝑚 

𝑏𝑒𝑓𝑜𝑟𝑒 = 1 ; 

The makespan of this example is 𝐶 max = 𝐸 3 , 5 = 30 . 
In addition to the above makespan objective, energy efficiency is a

ey objective in view of practical production. We know that energy con-

umption exists at any stage, i.e., the processing stage, blocking stage,

achine idle stage and so on. In addition, different scheduling sequences

ay result in different idle and blocking time lengths, leading to in-

reased energy consumption. Thus, for the BHFSP considered in this

aper, we not only consider the energy consumption of the processing

ime of these jobs but also take into account the energy consumption

f the idle and blocking times of all machines. The energy consumption

bjective is given as follows: 

Objective : 

 𝒓 𝒈 𝒎 𝒊 𝒏 𝑇 𝐸 𝐶 = 𝐸 𝐶 𝑃 + 𝐸 𝐶 𝐵 + 𝐸 𝐶 𝐼 (12)

 𝐶 𝑃 = 

∑
𝑠 ∈{1 ,...,𝑆} 

∑
𝑚 ∈𝑀 𝑠 

∑
𝑗∈{1 , 2 , ... , J} 

𝑋 𝑗,𝑚 × 𝑃 𝑃 𝑟𝑜𝑐𝑒𝑠𝑠 
𝑠,𝑚 

× 𝑝 𝑠,𝑗 (13)

 𝐶 𝐵 = 

∑
𝑠 ∈{2 ,...,𝑆} 

∑
𝑚 𝑏𝑒𝑓𝑜𝑟𝑒 ∈𝑀 𝑠 −1 

∑
𝑚 ∈𝑀 𝑠 

∑
𝑗∈{1 , 2 ,...,𝐽} 

𝑋 𝑗, 𝑚 𝑏𝑒𝑓𝑜𝑟𝑒 × ( 𝑀 

𝐼𝑑𝑙𝑒 
𝑠,𝑚 

− 𝐸 𝑠 −1 ,𝑗 ) × 𝑃
5 
 

𝑒𝑓𝑜𝑟𝑒 

(14) 

 𝐶 𝐼 = 

∑
𝑠 ∈{2 ,...,𝑆} 

∑
𝑚 ∈𝑀 𝑠 

∑
𝑗∈{1 , 2 , ... , J} 

( 𝐸 𝑠 −1 ,𝑗 − 𝑀 

𝐼𝑑𝑙𝑒 
𝑠,𝑚 

) × 𝑃 𝐼𝑑𝑙𝑒 
𝑠,𝑚 

(15)

here TEC is total energy consumption, 𝐸 𝐶 𝑃 represents the energy con-

umption when the machines process all jobs, 𝐸 𝐶 𝐵 represents the en-

rgy consumption of machines that remain in the blocking state, and

 𝐶 𝐼 represents energy consumption when the machines remain in the

dle state. 

. Proposed IGS algorithm for the BHFSP 

.1. Basic IG 

The traditional IG algorithm includes five main parts: initialization,

estruction and construction, iterative improvement, the acceptance cri-

erion, and the termination condition. First, an initial solution is gener-

ted by utilizing the NEH heuristic, and then iterative improvement is

mployed to improve the performance of the obtained solution through

ontinuous iterations and insertions (see lines 4-5 of Algorithm 1 ). In

he destruction phase, the job sequence, 𝜋= ( 𝜋1 , 𝜋2 , ..., 𝜋𝐽 ) , is partially

estroyed, and the number of removed jobs is controlled by parameter

. The setting of 𝑑 is very important. If it is too small, this will result in

low convergence and a small search range. If the value is too large, this

ill result in too much time spent and reduce the performance of the

G. Therefore, we test the setting of 𝑑 in Section 4.3 . When the destruc-

ion phase is finished, we obtain partial job sequences 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 and 𝜋or 𝑖𝑔𝑖𝑛 

here 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 is the set of 𝑑 removed jobs and 𝜋or 𝑖𝑔𝑖𝑛 consists of the re-

aining jobs (see line 8 of Algorithm 1 ). In the construction phase, every

ob in 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 is inserted into each possible position of 𝜋or 𝑖𝑔𝑖𝑛 , and the

est position is selected with the minimal objective value (see line 9 of

lgorithm 1 ). Then, the same local search as that applied before is used

gain to improve the convergence of the obtained solution. In the accep-

ance criterion, a simulated annealing algorithm is applied to determine

hether the improved job sequence replaces the current sequence (see

ine 11 of Algorithm 1 ). The procedure of the basic IG algorithm is given

elow. 

.2. Proposed IGS 

The existing literature has shown that the IG algorithm can achieve

ood results in solving flow shop and job shop scheduling problems.

owever, some strategies still need to be improved or modified. First,

n efficient local perturbation strategy can be designed to reduce the

ime complexity of the insertion strategy in the IG algorithm, where a

imple swap method is adopted to directly improve the current solu-

ion, which can not only ensure the convergence of the algorithm but

lso identify the global optimal solution as often as possible. Second,

rom the analysis of the simulation experiment results, we know that in

he simulated annealing stage, the generated solution easily falls into a

ocal optimum. Thus, to improve the performance of the IG algorithm in

olving the BHFSP with energy consumption, in the simulated anneal-

ng stage, a global perturbation strategy based on a half-swap can be

dopted to disturb the solution further to find a better solution. Based

n the above motivations, we propose an improved IG algorithm based

n a swap algorithm denoted as the IGS algorithm. 

First, according to the blocking characteristic of the BHFSP, the MME

euristic [20] is adopted to generate an initial solution by reducing the

ritical path length. Second, a local perturbation strategy is designed

o improve the current sequence to further strengthen the convergence

f the proposed algorithm. Third, to prevent the solutions from being

rapped in local optima, a new slight perturbation based on a half-swap

s performed in the simulated annealing stage. Algorithm 2 presents the

ramework of the proposed the IGS algorithm. 
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.2.1. Solution encoding and decoding 

For the BHFSP, we adopt a permutation-based representation as the

olution encoding method; that is, we apply an n -dimensional integer

equence 𝜋= ( 𝜋1 , 𝜋2 , ... 𝜋𝑗 , ..., 𝜋𝐽 ) to represent a solution, where 𝜋𝑗 de-

otes a job and 𝐽 represents the number of job sequences. Please see

ection 2 for further details on the decoding process; a specific example

f a BHFSP with six jobs and three stages is given. 

.2.2. Destruction and construction phase 

A good initial solution can accelerate the convergence speed of an

lgorithm. Thus, some heuristic methods, i.e., the NEH and MME, are

sed in the initialization stage. According to the blocking characteristic

f the BHFSP, an MME heuristic is adopted to shorten the blocking time

f jobs by using a shortest critical path. After initialization, destruction

nd construction operators are employed. Algorithm 3 shows the process

f job sequence destruction, where 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 is generated by randomly

xtracting 𝑑 jobs from 𝜋 and entering them into 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 one by one.
or 𝑖𝑔𝑖𝑛 consists of the remaining jobs in 𝜋. The construction phase begins

t the end of the destruction phase, and its main task is to construct

 completed and feasible scheduling sequence. The specific process is

hown by Algorithm 3 . 

.3. Local perturbation strategies based on swap operator 

In existing IG algorithms, the insertion operator is used as a local

earch strategy. Because all n jobs need to be inserted into (n-1) posi-

ions and each insertion will cause n-p + 1 moves (where p is the best

nsertion position), its time complexity is 𝑂( 𝑛 3 ) . Moreover, if the objec-

ive value is further improved after all of the above operations, it will

se too much execution time. Therefore, in this paper, to reduce time

omplexity, we abandon the traditional IG local search strategy and uti-

ize a local perturbation strategy based on a swap operator whose time

omplexity is only 𝑂( 𝑛 2 ) , where n is the number of iterations, and each

teration contains a swap operator. Similarly, we propose another local

erturbation for a comparison to the same kind of method, namely, the

wap greedy method, and the efficiency of the proposed swap strategy

s verified in Section 4 by comparing the insertion and insertion greedy

trategies. The following provides an example of 6 jobs that clearly il-

ustrate the above local perturbation strategies. 

Suppose that the current sequence is 𝜋𝑡𝑒𝑚𝑝 = ( 2 , 4 , 1 , 3 , 5 , 6 ) . The swap

ocal perturbation strategy, namely, IGS , is as follows: (1) Randomly

elect two jobs, i.e., 2 and 3, and (2) exchange the two jobs to obtain a

ew sequence, 𝜋𝑡𝑒𝑚𝑝 2 = ( 3 , 4 , 1 , 2 , 5 , 6 ) . If 𝜋𝑡𝑒𝑚𝑝 2 is better than 𝜋𝑡𝑒𝑚𝑝 , 𝜋𝑡𝑒𝑚𝑝 2 

eplaces 𝜋𝑡𝑒𝑚𝑝 . Otherwise, 𝜋𝑡𝑒𝑚𝑝 remains unchanged. (3) Continue steps

1) and (2) until the termination condition is met. 

For the same example, the swap greedy strategy, denoted as

G SwapGreedy , is as follows: (1) Swap the first job in 𝜋𝑡𝑒𝑚𝑝 , i.e., 2,

ith the remaining jobs, i.e., 4, 1, 3, 5, and 6, to obtain 5 new se-

uences, i.e., (4,2,1,3,5,6), (1,4,2,3,5,6), (3,4,1,2,5,6), (5,4,1,3,2,6), and

6,4,1,3,5,2), respectively. The generated sequence is denoted as 𝜋𝑡𝑒𝑚𝑝 2 .

2) If 𝜋𝑡𝑒𝑚𝑝 2 is better than 𝜋𝑡𝑒𝑚𝑝 , save 𝜋𝑡𝑒𝑚𝑝 2 and set 𝜋𝑡𝑒𝑚𝑝 2 = 𝜋𝑡𝑒𝑚𝑝 . Oth-

rwise, only set 𝜋𝑡𝑒𝑚𝑝 2 = 𝜋𝑡𝑒𝑚𝑝 . (3) Among the 5 sequences, choose the

est sequence to replace current sequence 𝜋𝑡𝑒𝑚𝑝 . (4) Swap jobs 4,1,3,5,

nd 6 with the remaining jobs and repeat steps (1)–(3) until all posi-

ions are selected and the jobs in these positions are exchanged with all

ther jobs. The pseudocode of the local perturbation strategy is given in

lgorithm 4 . 

.4. Global perturbation strategy based on a half-swap operator 

In the traditional IG algorithm, a simulated annealing acceptance cri-

erion is used to prevent the solution from falling into a local optimum.

owever, the solution obtained by the previous stage is not necessarily

ood. To strengthen and expand the neighborhood search of the current

olution, we develop a global perturbation strategy based on a half-swap

enoted as IG half-swap to disturb it further to find a better solution, and
6 
e integrate IG half-swap into the simulated annealing stage. In this way,

e can find a better solution more quickly. In addition, it is easier to

nd a solution that is similar to the global optimal solution, which is

bviously different from other IG algorithms and is also an innovation

f this paper. After the disturbance, the acceptance criterion is applied.

f the new solution is better than the current best solution, it will replace

he best solution. 

To clearly illustrate the above steps of IG half-swap , an example is

iven. Let 𝜋𝑡𝑒𝑚𝑝 = ( 2 , 4 , 1 , 3 , 5 , 6 ) . (1) We divide 𝜋𝑡𝑒𝑚𝑝 = ( 2 , 4 , 1 , 3 , 5 , 6 ) into

wo subsequences, 𝜋𝐹𝑟𝑜𝑛𝑡 = ( 2 , 4 , 1 ) and 𝜋𝐵𝑎𝑐𝑘 = ( 3 , 5 , 6 ) . (2) We select the

ubsequence, i.e., 𝜋𝐹𝑟𝑜𝑛𝑡 , with more energy consumption to be further

mproved. (3) We swap the first job in 𝜋𝐹𝑟𝑜𝑛𝑡 , i.e., 2, with jobs 4 and

, and obtain new sequences, i.e., (4,2,1) and (1,4,2), respectively, de-

oted as 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 . (4) If the energy consumption value of 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 is

maller than that of 𝜋𝐹𝑟𝑜𝑛𝑡 , 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 replaces 𝜋𝐹𝑟𝑜𝑛𝑡 . (5) A completed

equence, 𝜋𝑡𝑒𝑚𝑝 _ 𝑛𝑒𝑤 , is obtained by merging 𝜋𝐹𝑟𝑜𝑛𝑡 and 𝜋𝐵𝑎𝑐𝑘 . If 𝜋𝑡𝑒𝑚𝑝 _ 𝑛𝑒𝑤 

s better than 𝜋𝑡𝑒𝑚𝑝 , then 𝜋𝑡𝑒𝑚𝑝 is replaced by 𝜋𝑡𝑒𝑚𝑝 _ 𝑛𝑒𝑤 . (6) We apply the

econd and third jobs in 𝜋𝐹𝑟𝑜𝑛𝑡 in turn; swap jobs 4 and 1 with the re-

aining jobs; and repeat steps (3), (4), and (5) above until all positions

re selected and the jobs of these positions are exchanged with all other

obs. Finally, the best solution is obtained. Algorithm 5 illustrates the

lobal perturbation strategy based on a half-swap. 

. Experimental results and analysis 

.1. Parameter settings 

To verify the performance of the IGS algorithm, we randomly gen-

rate 150 test instances. Different numbers of jobs and stages can be

ombined to form various scale instances. We set the number of jobs

s 𝐽and the number of stages as 𝑆, where 𝐽∈{20,40,60,80,100,200,300}

nd 𝑆∈{5, 10}. In addition, for the very large scale, we test ten instances

n which J and S are set as 800 and 10, respectively. For each 𝐽 × 𝑆 com-

ination, ten instances are randomly produced, so the total number of

est instances is 7 × 2 × 10 + 10 × 1 = 150 . The processing time is gener-

ted in a uniform distribution within the range [ 1 , 30 ], and the number

f machines in each stage is randomly produced within the range [ 1 , 5 ],

here the energy consumption per unit of time for idling, processing

nd blocking is sampled from uniform distribution ranges [ 1 , 3 , 3 , 5 ] and

 5 , 7 ], respectively. 

By referring to [47] , all compared algorithms in our paper followed

he fair practices. First, all the algorithms are written in Visual Studio

019 C ++ , realized on a PC with 16 GB RAM of memory and a 2.60

HZ Intel Core i7 Pentium processor. Second, the same library func-

ions and the same background running environment are adopted to

ake a fair comparison. No other programs are executed in parallel

uring implementing an algorithm. Third, to maintain consistency, we

pply the same CPU elapsed time as the termination condition for all

lgorithms. For all tested cases, this termination condition is used in

 28 , 31 , 38 , 46 ], and the dynamic setting of CPU parameters allows for

ore time as the number of stages or jobs increases. In this paper, we de-

ote the termination condition as 𝑇 𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 , 𝑇 𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 = 𝐽 × 𝑆 × CPU ,

nd CPU ∈{5,7,9}. 

To validate the effect of the proposed algorithm, we compare the IGS

lgorithm to nine different algorithms. We first compare our proposed

GS algorithm to classical swarm intelligence optimization algorithms,

.e., GA [29] , DABC [30] , EMBO [31] , and DPSO [34] . Then, we com-

are the IGS algorithm to a series of IG algorithms, i.e., the original

G [17] and the latest improved IGRS, IGT, IGTALL, and VBIH [46] , to

urther test the performance of the IGS algorithm. The main simulation

arameters are set to the values recommended in the original literature.

able 2 lists the parameter settings of the compared algorithms. 

All of the tested algorithms are compiled and coded in Visual Studio

019, C ++ run on a Microsoft Windows 10 operating system with 16 GB

AM of memory and a 2.60 GHZ Intel Core i7 Pentium processor. Each

nstance is repeated five times, and then the best instance is selected. 
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Table 2 

Main simulation parameters of the comparison algorithms. 

Algorithms Population size Number of destruction jobs Crossover rate Variation rate Constant operator Temperature coefficient 

Psize d a T Pc Pm 

GA 100 / 4 0.85 0.7 0.1 

DABC 20 / 30 / / / 

EMBO 25 / 10 / / / 

DPSO 100 / 200 / / / 

IGA 1 3 10 0.5 / / 

IGRS 1 3 10 0.5 / / 

GT 1 2 10 0.5 / / 

IGTALL 1 3 10 0.5 / / 

VBIH 1 3 10 0.5 / / 

IGS 1 7 10 0.5 / / 

Table 3 

Experimental results for energy consumption with and without local perturbation strategies. 

Instance IGS IG SwapGreedy IG Insert IG InsertGreedy IGS N-Swap IGS N-HalfSwap 

J × S MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN 

20 × 5 16495 7873 16495 7885 16495 7898 16495 7895 16495 7873 16495 7884 

20 × 10 31262 22953 31284 22961 31226 22953 31331 † 22971 31295 22961 31321 † 22953 

40 × 5 29408 13136 29439 13356 ‡ 29448 13410 ‡ 29437 † 13477 ‡ 29408 13295 ‡ 29403 13171 

40 × 10 69651 47178 69823 † 47383 ‡ 69888 † 47378 ‡ 69644 47291 ‡ 69757 † 47417 ‡ 69616 47190 

60 × 5 55115 33450 55270 † 33608 ‡ 55431 † 33662 ‡ 55562 † 33783 ‡ 55284 † 33653 ‡ 55497 † 33550 ‡ 

60 × 10 106516 60277 106917 † 60791 ‡ 106722 † 60481 ‡ 106909 † 61594 ‡ 106707 † 60940 ‡ 106465 60221 

80 × 5 115730 27466 115681 27713 ‡ 115735 27656 ‡ 115973 † 27894 ‡ 115959 † 27816 ‡ 115680 27526 ‡ 

80 × 10 161993 81981 162043 † 82072 ‡ 162203 † 82346 ‡ 162807 † 81980 162117 † 81964 162118 † 82086 ‡ 

100 × 5 117752 31361 117822 † 31767 ‡ 117947 † 31876 ‡ 117842 † 32233 ‡ 117811 † 32096 ‡ 117770 31408 ‡ 

100 × 10 206722 111060 206765 111366 ‡ 206913 † 111782 ‡ 207257 † 112260 ‡ 206696 111559 ‡ 206632 111359 ‡ 

200 × 5 250584 60963 250703 † 61248 ‡ 251710 † 62384 ‡ 251578 † 62385 ‡ 251425 † 62417 ‡ 250975 † 60608 

200 × 10 454244 222839 456319 † 223467 ‡ 458128 † 224068 ‡ 459570 † 224402 ‡ 458606 † 225179 ‡ 455105 † 223115 ‡ 

300 × 5 409509 151898 409791 † 151898 410953 † 151900 410449 † 151898 411525 † 151918 409509 151898 

300 × 10 672018 332151 675080 † 333085 ‡ 675095 † 333367 ‡ 674797 † 334175 ‡ 677719 † 334638 ‡ 672049 332151 
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.2. Evaluation indicator 

We use the relative percentage increment (RPI) to evaluate the per-

ormance of all of the algorithms. The formula is given as follows: 

𝑃 𝐼 = ( 𝑐 𝑖 − 𝑐 𝑏𝑒𝑠𝑡 )∕ 𝑐 𝑏𝑒𝑠𝑡 × 100% , (16)

here 𝑐 𝑏𝑒𝑠𝑡 is the minimum energy consumption value obtained by all

f the algorithms and 𝑐 𝑖 is the energy consumption value yielded by al-

orithm 𝑖 . Clearly, the lower the RPI is, the better the performance of

he algorithm is. 

From the objective analysis of the BHFSP, we know that the energy

onsumption value is large, and therefore, the difference between the

umerator and denominator is small. The RPI values obtained by all of

he algorithms are also very small. Thus, to intuitively and comprehen-

ively evaluate the performance of the proposed algorithm, we compare

ot only the RPI value but also the maximum (MAX) and minimum

MIN) energy consumption levels, and the best results are marked in

old. 

Tables 3–7 present the Wilcoxon rank sum tests with a significance

evel of 0.05. The tests are designed to determine whether the objective

alues obtained by the IGS algorithm are significantly different from

hose obtained by the other compared algorithms for different scale ex-

mples. In Tables 3–7 , symbol ‘ † ’ indicates that the MAX value of the

omparison algorithm is significantly different from that of the IGS al-

orithm, ‘ ‡ ’ indicates that the MIN value of the algorithm is significantly

ifferent from that of the IGS algorithm, and if there is no symbol iden-

ification, the difference between the two algorithms is not significant. 

.3. Sensitivity analysis of parameters 

In this section, the impact of d values on IGS algorithm performance

s investigated. In the proposed algorithm, parameter 𝑑, the number of

emoved jobs, is very important to the local perturbation strategy. Thus,
7 
e first present a sensitivity analysis of parameter d before demonstrat-

ng the effectiveness of the proposed algorithm. Fig. 2 shows the impact

f different 𝑑values. In Fig. 2 , all tests are carried out under condition

PU = 7. Without a loss of generality, the value of d in the abscissa is

uned from 2 to 9 with a step size of 1, and the ordinate is the inter-

al of the energy consumption value of energy consumption for small-,

oderate- and large-scale instances. 

Fig. 2 shows that the average value of the interval gradually de-

reases as the value of d increases, and the objective reaches the mini-

um value when d = 7, suggesting that the local search is always benefi-

ial for the proposed algorithm. However, when d > 7, the average value

f energy consumption gradually increases. A d with a large value means

hat more time is spent performing the insertion operator, which de-

reases opportunities to generate promising solutions in a certain num-

er of iterations. Thus, from these results, we set the value of d to 7,

hich works well in terms of the average energy consumption value. 

.4. Evaluation with different perturbation strategies 

The basis of the IGS algorithm lies in the proposed perturbation

trategies. Therefore, it is necessary and interesting to verify perfor-

ance and effectiveness by evaluating the use and absence of different

trategies. This section compares the performance of the four proposed

erturbation strategies and selects the best strategy to apply to the pro-

osed algorithm. All of the compared strategies have the same parame-

er values and run at CPU = 7. For each scale, both the average and mini-

um energy consumption levels for the 10 cases are reported in Table 3 ,

here IGS includes local and global perturbation strategies based on

wap and half-swap operations. IG SwapGreedy only contains the local per-

urbation strategy based on the swap greedy operator, IG Insert includes

he local perturbation strategy based on an insert operator, IG InsertGreedy 

pplies the local perturbation strategy with an insert greedy operator,

nd IG SwapGreedy uses the swap greedy operation. IGS N-Swap employs
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Fig. 1. Gantt comparison of the HFSP with and without blocking constraints. 
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f  
he perturbation strategy without the swap strategy, and IGS N-HalfSwap 

dopts the perturbation strategy without the half-swap strategy. 

For consistency, these strategies are tested individually under the

ame termination criterion. According to the experimental results given

n Table 3 , we observe that the IGS algorithm generates 8/14 best MAX

alues and 11/14 MIN objective values and thus significantly more than

he other strategies, suggesting that the swap operator achieves good

erformance in terms of convergence and diversity. In addition, from

he results of Wilcoxon rank sum tests in Table 3 , the IGS algorithm is

ignificantly different from the other compared strategies. The reason-

ng here may be that the insertion operator changes the relative position

f only one job at a time, while the swap operator can alter the relative

ositions of two jobs at a time, which is conducive to exploiting promis-

ng subregions and exploring irregular unknown regions. Because the

ime complexity of the insertion operation is O ( n 3 ) and that of the ex-

hange operation is O ( n 2 ), the number of swap operations adopted in

he same time period is bound to be more than the number of insertion

perations. Swap operation can improve the blocking status of the job

equence faster and reduce the corresponding energy consumption. 
a  

r

8 
Based on the experimental results, we adopt the IGS algorithm ,

hich contains both perturbation strategies, to solve the BHFSP. 

.5. Performance comparison of all the compared algorithms 

For the sake of fairness and consistency, all of the compared algo-

ithms have the same termination time and experimental environment.

or 𝑇 𝑖𝑚𝑒𝑙𝑖𝑚𝑖𝑡 = 𝐽 ×𝑆 ×CPU , we set three different CPU parameter values,

.e., 5,7, and 9, to more comprehensively apply the algorithms. In Tables

–7 , the best result of each comparative method is bolded. 

To prove the presented results of statistical validity, the algorithms

re tested by a one-factor analysis of variance (ANOVA) in which the

ype of algorithm is regarded as a single factor. Figs. 3 and 4 display the

ean plots with Tukey HSD intervals at the 95% confidence level for

ll compared algorithms under different value of the CPU parameter.

n addition, Figs. 5–7 presents the box plots of the results generated

rom three scales in all compared algorithms, where ‘20 × 10’, ‘80 × 10’

nd ‘200 × 5’ represent the small-, moderate- and large-scale instances,

espectively. 



H.-X. Qin, Y.-Y. Han, B. Zhang et al. Swarm and Evolutionary Computation 69 (2022) 100992 

Fig. 2. Box plot of 𝑑values of the IGS algorithm. 
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.6. Analysis and discussion 

For the 15 different instance sets, Tables 4–7 list the MAX and MIN

alues of energy consumption obtained by the 10 compared algorithms

hen CPU = 5 and 7, respectively. In addition, the RPI values of all of

he algorithms are shown in brackets in Tables 4–7 . According to these

xperimental results for the two stopping criteria, considering all RPI

alues, the IGS algorithm is obviously better than the other compared al-

orithms in all test sets. The reason may be that the perturbation strate-

ies designed for blocking constraints reduce the invalid operation of the

achines. At all RPI scales, the IG series algorithms perform better than

he compared swarm intelligence algorithms. It shows that the IG algo-

ithm for a single solution can indeed explore the solution more deeply,

nd then find the solution with lower energy consumption. Among the

G algorithms, the IGS algorithm proposed in this paper achieves the

est RPI value in all test sets. In Tables 4 and 5 , regarding MIN values,

he IGS algorithm can obtain 13 and 9 lowest values for 15 test sets, re-

pectively. For MAX values, we observe that the IGS algorithm obtains

5 and 7 lowest values for 15 test sets. In Tables 6 and 7 , the IGS al-

orithm obtains 13/15 and 11/15 best MIN values. In addition, the IGS

lgorithm gains 15/15 and 10/15 best MAX values. Clearly, from the
9 
umber of best values obtained, the IGS algorithm performs the best.

he large-scale experimental results show that the perturbation strate-

ies designed for HFSP with blocking constraints can effectively allevi-

te the situation of machine blocking and reduce energy consumption

ore effectively than other current algorithms. Furthermore, Tables 4–

 show that for the Wilcoxon rank sum test, the compared algorithms

how statistically significant differences from the IGS algorithm at most

cales. 

In addition, Table 8 (see the Appendix) shows the best values for

nergy consumption for all test instances to result from the proposed

lgorithm in updating the upper bound. As shown in Table 8 , (1) for the

5 test sets with all scales, 14 and 8 of the best average and minimum

alues are obtained by the IGS algorithm, exceeding the corresponding

umbers of best values yielded by IGA (0 and 0), IGRS (0 and 0), IGT (1

nd 2), IGTALL (0 and 2), VBIH (0 and 5), GA (0 and 0), DABC (0 and

), EMBO (0 and 2), and DPSO (0 and 0); (2) for the upper bounds of the

50 test instances, 17/150, 14/150, 33/150, 19/150, 42/150, 13/150,

/150, 16/150, and 0/150 best objective values are produced by IGA,

GRS, IGT, IGTALL, VBIH, GA, DABC, EMBO, and DPSO, respectively,

hile 106 out of 150 (106/150 = 70.7%) of the best upper bounds are

btained by the proposed algorithm. These experimental results clearly

emonstrate that the proposed algorithm can update more upper bounds

han the compared algorithms. 

From these results, the proposed IGS algorithm shows outstanding

erformance. Compared to the classical swarm intelligence algorithms,

.e., GA, DABC, EMBO and DPSO, IGS is very prominent in its in-depth

xploration of a single solution, which makes it easier to find the job

equence with low energy consumption. Compared to the IG series al-

orithms, the IGA, IGRS, IGT, IGTALL and VBIH, although the proposed

GS algorithm does not achieve the best value on all scales, its perfor-

ance has surpassed similar algorithms. The superiority of the algo-

ithm is attributed to the local and global perturbation strategies pro-

osed in Sections 4.3 and 4.4 , the proposed strategies can reduce the

ime of ineffective machining, improving machine operation efficiency,

t proves that the proposed strategies strengthen the exploitation and ex-

loration abilities of the IGS algorithm. From the MIN and MAX energy

onsumption values obtained, the proposed strategy can directly reduce

he occurrence of blocking conditions in the job sequence by chang-

ng job positions several times, reducing the energy wastage caused by

locking. 
Fig. 3. Comparison of the 95% Tukey HSD 

confidence intervals of the algorithms when 

CPU = 5. 
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Fig. 4. Comparison of the 95% Tukey HSD 

confidence intervals of the algorithms when 

CPU = 7. 
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time. 
For statistical analysis, Tables 4–7 present the Wilcoxon rank sum

ests with a significance level of 0.05. This test is used to determine

hether the results obtained by one algorithm are statistically signif-

cantly different from those obtained by the other algorithms for all

est sets. From Tables 4–7 , for most BHFSP test instances, the IGS al-

orithm is significantly different from the other compared algorithms.

igs. 3 and 4 present the 95% Tukey HSD confidence intervals obtained

hen CPU = 5 and 7, respectively. From Figs. 3 and 4 , the IGS algo-

ithm performs statistically better than the other algorithms for differ-

nt elapsed CPU times. The IGT, IGTALL and VBIH algorithms follow
Table 8 ( continued ) 

Instance IGS IGA[17] IGRS[46] IGT[46] IGTAL

TI_127 345348 345387 345390 345551 34530

TI_128 368513 369733 369714 368083 36852

TI_129 174394 176641 176797 174515 17502

TI_130 281037 281225 281381 281297 28124

AVG MIN 250561.4 251193.6 251212.8 250502.1 25056

151898 151900 151904 151898 15195

300 × 10 TI_131 666405 676646 674984 667142 66910

TI_132 481295 481739 481666 480496 48067

TI_133 332143 333644 333098 332326 33212

TI_134 442818 443296 443366 442224 44314

TI_135 364282 368653 368775 364964 36551

TI_136 447017 448227 447996 447373 44733

TI_137 670020 676707 675292 670769 67235

TI_138 341310 341814 341881 341463 34163

TI_139 591013 594840 594900 592804 59282

TI_140 555131 572159 571014 563633 56255

AVG MIN 489143.4 493772.5 493297.2 490319.4 49072

332143 333644 333098 332326 33212

800 × 10 TI_141 1315359 1342235 1343653 1343869 13378

TI_142 1496199 1501016 1501164 1498880 14980

TI_143 1686289 1708099 1710540 1693788 16870

TI_144 986171 1002024 1002705 990196 98401

TI_145 1702741 1722703 1720849 1715497 17124

TI_146 1299959 1300590 1300887 1300402 12992

TI_147 1100771 1104621 1105342 1102492 10962

TI_148 1112917 1117658 1117735 1112883 11092

TI_149 1502239 1512538 1512414 1510936 15063

TI_150 1155174 1160750 1161022 1161508 11566

AVG MIN 1335781.9 1347223.4 1347631.1 1343045.1 13387

986171 1002024 1002705 990196 98401

10 
equentially, and all show good performance. In summary, the above ex-

erimental results prove that the proposed IGS algorithm is much more

ffective than the compared algorithms in addressing the BHFSP to min-

mize energy consumption. Similarly, we present box plot tests on small,

oderate and large scales. Figs. 5–7 show that our proposed IGS algo-

ithm obtains the lowest interval values and shows a relatively stable

ondition. It may be that the proposed perturbation strategies can bet-

er explore unknown neighborhoods, prevent the solution from falling

nto a local optimum, and find the optimal solution more easily in less
L[46] VBIH[46] GA[29] DABC[30] EMBO[31] DPSO[34] 

9 345257 345754 347513 345543 346099 

7 368490 374894 375806 370511 376012 

8 174155 188319 195450 177894 179260 

9 281229 281697 282158 281427 281622 

3.7 250537.2 255113 256825.2 251959.1 252950.1 

7 151898 152067 152387 151899 151957 

7 668920 712606 725135 685899 687680 

8 480750 489009 490627 483717 485307 

6 332126 339170 340710 335127 334636 

9 442527 452904 453978 448413 445026 

3 363962 392956 405058 374241 372889 

2 447332 468228 472960 458943 450200 

0 673020 699223 702676 688807 693996 

3 341993 362716 366687 355436 344179 

1 591870 602333 608240 598170 599330 

4 560533 627487 657175 589207 581875 

6.3 490303.3 514663.2 522324.6 501796 499511.8 

6 332126 339170 340710 335127 334636 

45 1336124 1435260 1473989 1417609 1434307 

94 1497954 1515740 1534072 1510872 1518832 

32 1686791 1785319 1987264 1774098 1800338 

2 983570 1055757 1143463 1050037 1066300 

96 1712830 1796089 1833326 1783880 1797921 

81 1299475 1304817 1307121 1303061 1305643 

90 1096266 1210776 1376197 1195650 1215806 

12 1109440 1180009 1270559 1169799 1186142 

54 1507324 1555247 1574675 1549271 1560674 

86 1157048 1235090 1289732 1218561 1232795 

30.2 1338682.2 1407410.4 1479039.8 1397283.8 1411875.8 

2 983570 1055757 1143463 1050037 1066300 
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Fig. 5. Box plot of all algorithms for the small-scale case. 

Fig. 6. Box plot of all algorithms for the moderate-scale case. 
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Fig. 7. Box plot of all algorithms for the large-scale case. 
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Remarks: as the above experimental results and analysis show, the

roposed IGS algorithm is an effective algorithm for solving the BHFSP.

he reasons can be concluded as follows. 

1) Local and global strategies based on swap operations are used to

disturb the job sequence. The local perturbation strategy is used to

replace the iterative improvement strategy. This strategy can carry

out more iterations of the current solution within a limited amount

of time and has a high probability of helping the solution jump out

of the current neighborhood to avoid falling into a local optimum.

Different from the traditional IG algorithm, the global perturbation

strategy is integrated into the simulated annealing criteria, which

improves the global search ability of the algorithm; once again, this

helps the solution explore a broader neighborhood. At the same time,
Algorithm 4 

IG Swap greedy . 

Input: 𝜋𝑡𝑒𝑚𝑝 

Output: 𝜋𝑡𝑒𝑚𝑝 

01: Begin 

02: For 𝑗 = 1 to 𝐽 // the number of iterations 

03: 𝜋𝑡𝑒𝑚𝑝 2 = 𝜋𝑡𝑒𝑚𝑝 

04: Select the job in 𝜋𝑡𝑒𝑚𝑝 2 that equals 𝜋
𝑡𝑒𝑚𝑝 

𝑗 
to swap

05: Find the best Sequence denoted as 𝜋𝑡𝑒𝑚𝑝 2 

06: If ( 𝜋𝑡𝑒𝑚𝑝 2 is better than 𝜋𝑡𝑒𝑚𝑝 ) 

07: 𝜋𝑡𝑒𝑚𝑝 = 𝜋𝑡𝑒𝑚𝑝 2 

08: EndIf 

09: EndFor 

10: End 

11 
the characteristics of the BHFSP are considered in these two strate-

gies. 

2) The IGS algorithm has only one solution, since it always iterates over

only one solution; therefore, the algorithm can explore the solution

at a deeper level, allowing it to easily obtain scheduling sequences

with less energy consumption and effectively change the positions of

blocked jobs. Moreover, the IGS algorithm performs well not only on

a small scale but also on a very large scale as shown by the 800 × 10

scale cases. This result indicates that the algorithm achieves stable

performance, good robustness and strong applicability. 

.7. Gantt charts of specific cases 

To observe the optimal scheduling sequence processing and block-

ng status more intuitively, we provide an optimal scheduling plan for

anagers of factories. Figs. 8 and 9 show the Gantt charts of TI_02

20 × 5 scale) and TI_22 (40 × 5 scale) under condition CPU = 7,

espectively. Each color represents the operational status of a spe-

ific job in all stages. The numbers of scheduling jobs and stages

Job-Stage) are marked with rectangles. The horizontal axis repre-

ents the makespan value. After the completion time of the last job,

e give the energy consumption level of all machines. From Fig. 8 ,

he optimal scheduling sequence is 3-15-1-8-18-14-9-7-11-10-16-13-2-

2-5-4-20-19-17-6, the makespan value is equal to 223, and the en-

rgy consumption is equal to 7875. From Fig. 9 , the optimal schedul-

ng sequence is 37-34-2-17-19-1-36-40-33-3-30-27-23-12-15-13-26-

6-4-28-24-22-25-21-7-5-6-20-39-31-11-10-32-18-14-9-8-29-38-35, the

akespan value is 423, and the energy consumption is 18247. 

. Conclusion 

This paper addressed the BHFSP with energy consumption criteria.

n this paper, a reasonable mathematical model of the energy-efficient
 with the rest jobs and save better ones 
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Fig. 8. Gantt chart of the TI_02 case when CPU = 7. 

Fig. 9. Gantt chart of the TI_22 case when CPU = 7. 

B  

a  

e  

c  

h  

l  

s  

r  

a  

m

(  

 

(  

(  

 

 

(  

 

 

t  

f  

v  

o  

o  

d  

m  

m  

c  

i  

w

D

 

p  

d  

r  

C

 

t

r  

i  

W  

i  

W  
HFSP that considers job blocking and idle machines is proposed, and

n effective IGS algorithm is designed to solve the BHFSP. From the 150

xample tests, the proposed algorithm performs better than the existing

lassical algorithms and improved IG algorithms. In this algorithm, a

euristic method called the MME is utilized to generate an initial so-

ution, and then, two perturbation strategies based on swap and half-

wap methods are developed to improve the exploitation and explo-

ation of this algorithm. Simulation experiments show that our strategies

re more effective than these existing algorithms. The superior perfor-

ance of this algorithm is mainly attributed to the following. 

1) The strategies designed for blocking constraints can effectively ad-

just the scheduled job sequence and reduce energy consumption

caused by blocking constraints. 

2) Two perturbation strategies are integrated into the IG framework to

balance global and local search abilities. 

3) The local perturbation strategy can reduce the computational com-

plexity of the original local search strategy, and with an increasing

number of iterations, the local neighborhood of the solution is more

fully explored. 

4) The global perturbation strategy can further improve the exploration

of unknown subregions and enhance the diversity of solutions, fur-

ther reducing the energy consumption of job processing. 

Although the IGS algorithm outperforms the algorithms considered,

he algorithm’s performance could be further improved by using rein-

orcement learning methods or strategies of adaptive learning when de-
12 
ising it. Our future research will treat energy efficiency as the main

ptimization goal. Similarly, the algorithm can be extended from single-

bjective to multiobjective research. In addition, we may consider a

istributed situation or consider other optimization goals, such as the

akespan and total flow time, in exploring the issues addressed. We

ay also consider uncertain conditions such as machine breakdowns,

hanging due dates, and job processing times. Some practical and real-

stic conditions, for instance, various setup times and no-wait scenarios,

ould be interesting to consider. 
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Table 4 

Experimental results for energy consumption compared to those of classic algorithms when CPU = 5. 

Instance IGS GA [ 29 ] DABC [ 30 ] EMBO [ 31 ] DPSO [ 34 ] 

J × S MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI 

20 × 5 16495 7895 0.00 16495 7918 ‡ 0.01 16526 † 8007 ‡ 0.02 16495 7870 0.01 18042 † 8581 ‡ 0.09 

20 × 10 31262 22953 0.00 31429 † 22990 ‡ 0.01 31263 † 22982 ‡ 0.02 31297 22961 0.01 33583 † 24114 ‡ 0.05 

40 × 5 29435 13030 0.01 29739 † 13431 ‡ 0.04 29914 † 14118 ‡ 0.09 29498 13168 ‡ 0.03 30000 † 15092 ‡ 0.11 

40 × 10 69611 47190 0.01 69851 † 48044 ‡ 0.02 70723 † 49178 ‡ 0.05 69744 † 47935 ‡ 0.02 71301 † 51338 ‡ 0.05 

60 × 5 55382 33478 0.00 55657 † 33946 ‡ 0.02 56817 † 34625 ‡ 0.03 55961 † 33646 ‡ 0.01 57848 † 34338 ‡ 0.03 

60 × 10 106513 60377 0.01 107263 † 61576 ‡ 0.03 111245 † 64227 ‡ 0.07 107746 † 60997 ‡ 0.02 113750 † 62015 ‡ 0.05 

80 × 5 115926 27474 0.00 116528 † 28002 ‡ 0.02 118207 † 28727 ‡ 0.04 116080 † 27782 ‡ 0.01 119820 † 28410 ‡ 0.03 

80 × 10 161899 81925 0.01 165359 † 85828 ‡ 0.05 166244 † 88624 ‡ 0.09 162836 † 83899 ‡ 0.02 165378 † 83237 ‡ 0.04 

100 × 5 117786 31413 0.00 118251 † 32512 ‡ 0.03 120287 † 34609 ‡ 0.05 118196 † 32193 ‡ 0.02 119504 † 33702 ‡ 0.03 

100 × 10 206726 111465 0.01 208039 † 117072 ‡ 0.07 220981 † 119878 ‡ 0.11 207924 † 113305 ‡ 0.04 208177 † 113537 ‡ 0.04 

200 × 5 250975 60608 0.01 269297 † 65860 ‡ 0.07 274196 † 68022 ‡ 0.09 253339 † 64081 ‡ 0.04 253619 † 63627 ‡ 0.14 

200 × 10 455083 222839 0.01 480557 † 240067 ‡ 0.10 489810 † 240855 ‡ 0.13 466725 † 234505 ‡ 0.05 472748 † 224800 ‡ 0.03 

300 × 5 409509 151898 0.00 414430 † 152914 ‡ 0.03 417100 † 152737 ‡ 0.03 412287 † 151904 ‡ 0.01 413836 † 151957 ‡ 0.05 

300 × 10 671373 332151 0.00 726368 † 341201 ‡ 0.08 728528 † 341669 ‡ 0.08 697574 † 336586 ‡ 0.04 693996 † 334636 ‡ 0.02 

800 × 10 1702741 986171 0.00 1823892 † 1077554 ‡ 0.07 2010612 † 1156467 ‡ 0.13 1801636 † 1065969 ‡ 0.06 1830261 † 1086087 ‡ 0.07 

Table 5 

Experimental results for energy consumption compared to those of other existing IG algorithms when CPU = 5. 

Instance IGS IGA [ 17 ] IGRS [ 46 ] IGT [ 46 ] IGTALL [ 46 ] VBIH [ 46 ] 

J × S MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI 

20 × 5 16495 7895 0.00 16535 † 7895 0.01 16495 7950 ‡ 0.01 16495 7941 ‡ 0.01 16495 7906 0.01 16495 7895 0.01 

20 × 10 31262 22953 0.00 31263 22953 0.01 31321 22982 0.01 31263 22953 0.01 31331 † 22970 0.01 31451 † 22953 0.00 

40 × 5 29435 13030 0.01 29424 13563 ‡ 0.03 29508 † 13665 ‡ 0.03 29404 13274 ‡ 0.03 29472 13621 ‡ 0.03 29444 13404 ‡ 0.03 

40 × 10 69611 47190 0.01 69976 † 48093 ‡ 0.01 69929 † 48092 ‡ 0.02 69845 † 47975 ‡ 0.01 69990 † 47731 ‡ 0.01 69889 † 47725 ‡ 0.01 

60 × 5 55382 33478 0.00 55661 † 33613 ‡ 0.01 55697 † 33837 ‡ 0.01 55310 33639 ‡ 0.01 55399 33770 ‡ 0.01 55411 † 33589 ‡ 0.01 

60 × 10 106513 60377 0.01 107121 † 60964 ‡ 0.02 107923 † 60847 ‡ 0.02 107044 † 60953 ‡ 0.01 107216 † 60730 ‡ 0.01 106749 † 60730 ‡ 0.01 

80 × 5 115926 27474 0.00 116061 † 27795 ‡ 0.01 116151 † 27825 ‡ 0.01 115926 27468 0.00 116009 † 27638 ‡ 0.01 115898 27554 ‡ 0.00 

80 × 10 161899 81925 0.01 162009 † 82199 ‡ 0.02 162374 † 82550 ‡ 0.02 161937 † 82705 ‡ 0.01 162104 † 82495 ‡ 0.01 161842 82007 ‡ 0.01 

100 × 5 117786 31413 0.00 118071 † 32036 ‡ 0.01 118253 † 31671 ‡ 0.01 117933 † 31732 ‡ 0.01 118250 † 31418 0.01 118041 † 31515 ‡ 0.01 

100 × 10 206726 111465 0.01 206851 † 112098 ‡ 0.02 206922 † 112477 ‡ 0.02 206665 111257 0.01 206911 † 111615 ‡ 0.01 206599 111171 0.01 

200 × 5 250975 60608 0.01 251715 † 62218 ‡ 0.02 252575 † 62501 ‡ 0.02 250801 60591 0.01 250752 61125 ‡ 0.01 250727 61356 ‡ 0.01 

200 × 10 455083 222839 0.01 464337 † 222944 ‡ 0.02 464622 † 222943 ‡ 0.02 454349 222525 0.01 458805 † 221619 0.01 456859 † 221771 0.01 

300 × 5 409509 151898 0.00 410962 † 151912 ‡ 0.01 410584 † 151904 0.00 408865 151898 0.01 408809 151957 ‡ 0.00 409397 151898 0.00 

300 × 10 671373 332151 0.00 678698 † 333824 ‡ 0.01 675292 † 333098 ‡ 0.01 672102 † 332326 ‡ 0.00 672350 † 332126 0.00 673020 † 332126 0.00 

800 × 10 1702741 986171 0.00 1722703 † 1002024 ‡ 0.01 1720849 † 1002705 ‡ 0.01 1715497 † 990196 ‡ 0.01 1712496 † 984012 0.00 1712830 † 983570 0.00 

1
3
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Table 6 

Experimental results of energy consumption compared to those of classic algorithms when CPU = 7. 

Instance IGS GA [ 29 ] DABC [ 30 ] EMBO [ 31 ] DPSO [ 34 ] 

J × S MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI 

20 × 5 16495 7873 0.00 16495 7918 ‡ 0.01 16526 † 8007 ‡ 0.01 16495 7870 0.01 18042 † 8581 ‡ 0.09 

20 × 10 31262 22953 0.00 31429 † 22990 ‡ 0.01 31263 22982 ‡ 0.01 31297 22961 0.01 33583 † 24114 ‡ 0.05 

40 × 5 29408 13136 0.01 29627 † 13313 ‡ 0.03 29893 † 14118 ‡ 0.08 29497 † 13111 0.02 30000 † 15092 ‡ 0.11 

40 × 10 69651 47178 0.01 69851 † 48044 ‡ 0.02 70535 † 49161 ‡ 0.05 69744 † 47734 ‡ 0.01 71301 † 51338 ‡ 0.05 

60 × 5 55115 33450 0.00 55594 † 33875 ‡ 0.01 56725 † 34368 ‡ 0.03 55953 † 33604 ‡ 0.01 57848 † 34338 ‡ 0.03 

60 × 10 106516 60277 0.00 107028 † 61466 ‡ 0.02 109667 † 63640 ‡ 0.06 107564 † 60830 ‡ 0.02 113750 † 62015 ‡ 0.05 

80 × 5 115730 27466 0.00 116114 † 27893 ‡ 0.02 118163 † 28647 ‡ 0.03 116020 † 27701 ‡ 0.01 119820 † 28410 ‡ 0.03 

80 × 10 161993 81981 0.01 164080 † 84901 ‡ 0.04 165911 † 88391 ‡ 0.07 162669 † 83455 ‡ 0.02 165378 † 83237 ‡ 0.04 

100 × 5 117752 31361 0.00 118131 † 32222 ‡ 0.02 119684 † 34537 ‡ 0.05 118127 † 31935 ‡ 0.01 119504 † 33702 ‡ 0.03 

100 × 10 206722 111060 0.01 207722 † 115279 ‡ 0.05 217169 † 118392 ‡ 0.10 207778 † 112876 ‡ 0.03 208177 † 113537 ‡ 0.04 

200 × 5 250584 60963 0.01 262797 † 65085 ‡ 0.06 272974 † 67613 ‡ 0.08 251895 † 62918 ‡ 0.03 253619 † 63627 ‡ 0.13 

200 × 10 454244 222839 0.01 477360 † 237289 ‡ 0.07 486860 † 239394 ‡ 0.11 463635 † 233131 ‡ 0.04 472748 † 224800 ‡ 0.03 

300 × 5 409509 151898 0.00 414041 † 152301 ‡ 0.03 416301 † 152639 ‡ 0.03 411959 † 151902 ‡ 0.01 413836 † 151957 ‡ 0.05 

300 × 10 672018 332151 0.00 718748 † 339903 ‡ 0.06 726522 † 341194 ‡ 0.08 693195 † 336002 ‡ 0.03 693996 † 334636 ‡ 0.02 

800 × 10 1702741 986171 0.00 1803626 † 1063092 ‡ 0.06 1995258 † 1151241 ‡ 0.13 1786842 † 1054766 ‡ 0.05 1818535 † 1074096 ‡ 0.07 

Table 7 

Experimental results of energy consumption compared to those of other existing IG algorithms when CPU = 7. 

Instance IGS IGA [ 17 ] IGRS [ 46 ] IGT [ 46 ] IGTALL [ 46 ] VBIH [ 46 ] 

J × S MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI MAX MIN RPI 

20 × 5 16495 7873 0.00 16535 † 7895 0.01 16495 7936 ‡ 0.01 16495 7941 ‡ 0.01 16495 7906 ‡ 0.01 16495 7895 0.01 

20 × 10 31262 22953 0.00 31263 22953 0.01 31284 22982 0.00 31263 22953 0.00 31262 22970 0.00 31451 † 22953 0.00 

40 × 5 29408 13136 0.01 29412 13559 ‡ 0.03 29508 † 13419 ‡ 0.03 29404 13274 ‡ 0.03 29472 † 13616 ‡ 0.03 29444 13404 ‡ 0.03 

40 × 10 69651 47178 0.01 69976 † 47921 ‡ 0.01 69784 † 47888 ‡ 0.01 69845 † 47975 ‡ 0.01 69990 † 47731 ‡ 0.01 69889 † 47256 ‡ 0.01 

60 × 5 55115 33450 0.00 55661 † 33592 ‡ 0.01 55697 † 33765 ‡ 0.01 55310 † 33639 ‡ 0.01 55399 † 33770 ‡ 0.01 55411 † 33589 ‡ 0.01 

60 × 10 106516 60277 0.00 107094 † 60763 ‡ 0.01 107755 † 60647 ‡ 0.02 106958 † 60953 ‡ 0.01 107216 † 60730 ‡ 0.01 106749 † 60561 ‡ 0.01 

80 × 5 115730 27466 0.00 116058 † 27756 ‡ 0.01 116028 † 27822 ‡ 0.01 115926 † 27468 0.00 115968 † 27638 ‡ 0.01 115898 † 27554 ‡ 0.00 

80 × 10 161993 81981 0.01 161997 82199 ‡ 0.01 162374 † 82463 ‡ 0.02 161937 82683 ‡ 0.01 162104 † 82184 ‡ 0.01 161842 82007 ‡ 0.01 

100 × 5 117752 31361 0.00 118071 † 31978 ‡ 0.01 118205 † 31671 ‡ 0.01 117894 † 31526 ‡ 0.01 118250 † 31418 ‡ 0.01 117954 † 31515 ‡ 0.01 

100 × 10 206722 111060 0.01 206754 112062 ‡ 0.02 206922 † 112477 ‡ 0.02 206665 111257 ‡ 0.01 206911 † 111615 ‡ 0.01 206599 111171 ‡ 0.01 

200 × 5 250584 60963 0.01 251555 † 62203 ‡ 0.02 252311 † 62501 ‡ 0.02 250801 60591 0.01 250752 † 61125 ‡ 0.01 250727 † 60931 0.01 

200 × 10 454244 222839 0.01 463468 † 222741 0.02 464622 † 222943 ‡ 0.02 454349 † 222525 0.01 458805 † 221619 0.01 456859 † 221771 0.01 

300 × 5 409509 151898 0.00 410600 † 151912 ‡ 0.01 410584 † 151904 0.00 408713 151898 0.01 408809 151957 ‡ 0.00 409397 151898 0.00 

300 × 10 672018 332151 0.00 676960 † 333748 ‡ 0.01 675292 † 333098 ‡ 0.01 670769 332326 ‡ 0.00 672350 † 332126 0.00 673020 † 332126 0.00 

800 × 10 1702741 986171 0.00 1722703 † 1002024 ‡ 0.01 1720849 † 1002705 ‡ 0.01 1715497 † 990196 ‡ 0.01 1712496 † 984012 0.00 1712830 † 983570 0.00 

1
4
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Table 8 

Specific energy consumption values in all cases when CPU = 9. 

Instance IGS IGA[17] IGRS[46] IGT[46] IGTALL[46] VBIH[46] GA[29] DABC[30] EMBO[31] DPSO[34] 

20 × 5 TI_01 10117 10117 10117 10117 10117 10144 10220 10117 10117 11751 

TI_02 7885 7895 7936 7941 7906 7895 7918 8004 7870 8581 

TI_03 10428 10438 10428 10428 10437 10428 10428 10437 10438 11268 

TI_04 8514 8581 8532 8558 8539 8539 8538 8593 8552 9436 

TI_05 8357 8467 8361 8503 8397 8389 8423 8459 8419 8746 

TI_06 16495 16535 16495 16495 16495 16495 16495 16526 16495 18042 

TI_07 12228 12228 12228 12228 12228 12228 12228 12228 12228 12310 

TI_08 12245 12245 12245 12245 12256 12245 12245 12245 12245 12354 

TI_09 9617 9642 9623 9642 9617 9642 9623 9690 9710 10493 

TI_10 9875 9982 9903 9875 9962 9903 9883 9926 10069 10685 

AVG MIN 10576.1 10613 10586.8 10603.2 10595.4 10590.8 10600.1 10622.5 10614.3 11366.6 

7885 7895 7936 7941 7906 7895 7918 8004 7870 8581 

20 × 10 TI_11 22953 22953 22982 22953 22970 22953 22990 22959 22961 24114 

TI_12 29001 29015 29037 29037 29081 29001 29015 29001 29015 30008 

TI_13 25412 25412 25412 25412 25412 25412 25412 25412 25447 28219 

TI_14 28612 28634 28634 28634 28704 28612 28642 28761 28612 28930 

TI_15 30622 30622 30622 30622 30647 30622 30829 30662 30622 33583 

TI_16 27325 27348 27348 27331 27414 27331 27336 27331 27325 28029 

TI_17 28031 28031 28031 28326 28031 28188 28623 28492 28577 29615 

TI_18 29670 29738 29710 29670 29707 29681 29708 29774 29548 29977 

TI_19 26079 26437 26079 26079 26079 26079 26178 26162 26079 27576 

TI_20 31262 31263 31284 31263 31262 31339 31429 31263 31297 33278 

AVG MIN 27896.7 27945.3 27913.9 27932.7 27930.7 27921.8 28016.2 27981.7 27948.3 29332.9 

22953 22953 22982 22953 22970 22953 22990 22959 22961 24114 

40 × 5 TI_21 13154 13559 13419 13274 13616 13404 13235 14098 13043 15092 

TI_22 17803 18169 18226 18010 18271 18237 18382 18965 17983 19329 

TI_23 17023 17127 17206 17096 17206 17072 17198 17564 17188 17625 

TI_24 29408 29409 29508 29404 29472 29444 29552 29893 29497 30000 

TI_25 15299 15698 15718 15785 15701 15399 15752 16745 15638 17744 

TI_26 20514 20569 20839 20994 20655 20553 20331 21712 20993 22828 

TI_27 16436 16812 16732 16964 16983 16858 16540 17897 16452 18708 

TI_28 16908 17031 17133 16863 17086 17032 17179 17620 16971 17659 

TI_29 19229 19450 19656 19561 19439 19431 19539 19599 19372 20907 

TI_30 19718 20262 20340 20509 20024 20039 19965 21667 20154 23388 

AVG MIN 18549.2 18808.6 18877.7 18846 18845.3 18746.9 18767.3 19576 18729.1 20328 

13154 13559 13419 13274 13616 13404 13235 14098 13043 15092 

40 × 10 TI_31 55613 57457 56414 56398 56141 56444 56839 59407 56553 61190 

TI_32 56597 56626 56717 56622 56647 56647 56688 57027 56662 58091 

TI_33 69681 69960 69784 69845 69990 69864 69851 70377 69744 71301 

TI_34 51037 51040 51673 51462 50920 50849 51686 53448 51331 53128 

TI_35 68881 69489 69251 69383 69528 68940 69175 70310 69261 70806 

TI_36 51557 51704 51886 51811 51835 51692 52079 52505 51998 53325 

TI_37 52700 53086 53052 52950 53064 52884 53681 55548 53117 54117 

TI_38 64394 65004 65296 64831 64997 64802 64700 67238 64845 68406 

TI_39 47190 47550 47888 47975 47731 47256 47879 49161 47734 52763 

TI_40 50889 50889 50889 50889 50889 50889 50889 50891 50889 51338 

AVG MIN 56853.9 57280.5 57285 57216.6 57174.2 57026.7 57346.7 58591.2 57213.4 59446.5 

47190 47550 47888 47975 47731 47256 47879 49161 47734 51338 

60 × 5 TI_41 40042 40013 40172 40075 40075 40000 40756 41200 40126 41633 

TI_42 33428 33592 33741 33639 33770 33589 33810 34268 33521 34338 

TI_43 52348 52348 52379 52348 52361 52348 52348 52361 52348 52741 

TI_44 55251 55646 55697 55310 55399 55411 55497 56394 55941 57848 

TI_45 42588 42894 43081 43045 42924 42844 43402 44215 42890 44219 

TI_46 45684 45684 45684 45684 45785 45684 45684 45710 45684 45785 

TI_47 35919 36338 36616 35915 36274 36208 36237 37039 36187 37791 

TI_48 41336 41593 41738 41745 41444 41612 41847 42254 41763 42929 

TI_49 36211 36233 36233 36245 36268 36233 36384 36929 36223 36412 

TI_50 49603 49548 49648 49613 49737 49608 49648 49862 49673 49853 

AVG MIN 43241 43388.9 43498.9 43361.9 43403.7 43353.7 43561.3 44023.2 43435.6 44354.9 

33428 33592 33741 33639 33770 33589 33810 34268 33521 34338 

60 × 10 TI_51 71151 71102 70969 71239 71422 71104 71759 72959 71404 72700 

TI_52 99695 99725 99816 99737 99803 99743 99995 101169 99788 100623 

TI_53 103316 104946 104489 103861 104561 104040 103952 109553 104933 113750 

TI_54 60012 60645 60647 60953 60730 60537 60996 63267 60579 62015 

TI_55 80878 81954 82083 81473 81538 81670 82994 85943 82058 84313 

TI_56 85484 85794 85996 85840 85922 85806 86746 87626 85822 87408 

TI_57 70509 71414 71908 70874 71197 70767 71630 75291 71592 74100 

TI_58 106568 107006 107106 106877 107216 106749 106847 107934 107210 110015 

TI_59 82540 85113 85073 84638 83633 83617 83414 88150 83989 91605 

TI_60 85164 86166 86394 85797 86361 85543 85625 89809 85875 89219 

AVG MIN 84531.7 85386.5 85448.1 85128.9 85238.3 84957.6 85395.8 88170.1 85325 88574.8 

60012 60645 60647 60953 60730 60537 60996 63267 60579 62015 

80 × 5 TI_61 70661 70738 70830 70711 70839 70724 70980 71629 70813 71595 

TI_62 45028 45054 45191 45091 45078 44991 45568 46102 45128 45441 

TI_63 57313 57313 57316 57313 57335 57316 57313 57395 57313 57694 

( continued on next page ) 
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Table 8 ( continued ) 

Instance IGS IGA[17] IGRS[46] IGT[46] IGTALL[46] VBIH[46] GA[29] DABC[30] EMBO[31] DPSO[34] 

TI_64 40327 40935 41279 40697 40779 40591 41348 42633 40613 42853 

TI_65 38815 38881 38925 38909 38988 38904 39132 39692 38830 39673 

TI_66 33555 33615 33781 33597 33605 33511 34185 35245 33725 34543 

TI_67 115771 116051 116028 115926 115968 115898 115928 117568 116002 119820 

TI_68 27413 27651 27822 27468 27638 27554 27775 28573 27615 28410 

TI_69 55873 55875 55881 55875 55883 55879 55879 55904 55879 56147 

TI_70 67531 68361 68447 67792 67808 67813 68835 69614 67862 69744 

AVG MIN 55228.7 55447.4 55550 55337.9 55392.1 55318.1 55694.3 56435.5 55378 56592 

27413 27651 27822 27468 27638 27554 27775 28573 27615 28410 

80 × 10 TI_71 112163 113225 113013 112251 112629 113065 116354 122218 113575 115910 

TI_72 81810 82038 82463 82572 82184 81999 84065 87610 83022 83237 

TI_73 120237 120505 120540 120467 120600 120290 120892 122396 120545 121525 

TI_74 101502 103466 103143 102778 101336 101067 105582 110037 102488 108122 

TI_75 161877 161997 162287 161937 162104 161842 163467 165911 162382 165378 

TI_76 108975 110154 111450 110254 109709 108935 113325 119788 109985 118857 

TI_77 138131 138912 139685 139035 139362 138823 139995 141476 138991 142040 

TI_78 125764 127082 126974 126691 126044 126273 129610 132348 127095 130229 

TI_79 131407 132469 133814 132929 132674 132121 134378 136994 132786 137668 

TI_80 105934 108457 109789 107457 108872 107696 110357 113015 107084 112857 

AVG MIN 118780 119830.5 120315.8 119637.1 119551.4 119211.1 121802.5 125179.3 119795.3 123582.3 

81810 82038 82463 82572 82184 81999 84065 87610 83022 83237 

100 × 5 TI_81 54677 56067 56171 55184 55471 55295 56456 57784 55236 57756 

TI_82 63387 63387 63387 63387 63392 63387 63387 63515 63391 63627 

TI_83 100022 100904 101067 100650 100519 100167 100511 104211 100223 102478 

TI_84 117693 118071 118205 117894 118250 117915 118011 119089 118034 119504 

TI_85 42107 42842 42552 42250 42216 42360 43794 45468 42828 43882 

TI_86 67067 67067 67080 67067 67135 67067 67067 67184 67071 67386 

TI_87 55149 55149 55316 55149 55221 55149 55208 55439 55150 55814 

TI_88 64941 65003 65140 64976 65028 64912 65985 67528 65322 65704 

TI_89 52041 52385 52365 52034 52033 51949 53004 54466 52320 53378 

TI_90 31292 31861 31671 31526 31418 31515 32026 34339 31583 33702 

AVG MIN 64837.6 65273.6 65295.4 65011.7 65068.3 64971.6 65544.9 66902.3 65115.8 66323.1 

31292 31861 31671 31526 31418 31515 32026 34339 31583 33702 

100 × 10 TI_91 137236 139228 139791 139154 138666 138486 144569 152704 139734 144033 

TI_92 113604 114593 115167 114516 114527 113940 119579 129511 116460 118345 

TI_93 144155 144886 145143 144814 144713 144225 146893 148797 145779 146870 

TI_94 189754 192520 193719 190252 189398 188359 197253 215329 192647 203076 

TI_95 123281 123834 125088 123929 123419 123370 128736 138449 125819 128332 

TI_96 206616 206746 206904 206665 206911 206599 207532 208557 207457 208177 

TI_97 140814 142406 143020 141704 142016 141921 144932 150141 142591 148722 

TI_98 111434 111926 112477 111257 111615 111171 114239 118392 112117 113537 

TI_99 141974 142674 142840 142545 142213 142107 143432 146429 143366 144991 

TI_100 179439 186433 186153 182769 180943 180591 188024 196485 183687 190974 

AVG MIN 148830.7 150524.6 151030.2 149760.5 149442.1 149076.9 153518.9 160479.4 150965.7 154705.7 

111434 111926 112477 111257 111615 111171 114239 118392 112117 113537 

200 × 5 TI_101 239966 240263 240298 239951 240116 239879 241768 242920 240498 243084 

TI_102 210021 210142 210776 210129 210070 209992 211287 212279 210509 212273 

TI_103 75246 76440 76910 75561 75694 75629 82158 84007 78007 79172 

TI_104 83844 89333 90444 84991 85321 84393 91777 94771 87884 93200 

TI_105 134537 134564 134539 134537 134554 134537 134537 134701 134537 134669 

TI_106 173586 174301 174214 173067 172907 172916 178020 183296 175325 176649 

TI_107 250796 251555 252023 250801 250752 250727 259591 270593 251290 253619 

TI_108 60768 62184 62290 60591 61125 60931 64495 67420 62533 63627 

TI_109 136066 136757 137748 136266 136128 136032 143038 149421 137741 139801 

TI_110 67612 69905 69770 67621 67708 67433 72327 76381 69906 72442 

AVG MIN 143244.2 144544.4 144901.2 143351.5 143437.5 143246.9 147899.8 151578.9 144823 146853.6 

60768 62184 62290 60591 61125 60931 64495 67420 62533 63627 

200 × 10 TI_111 333482 335635 335746 335325 333286 333475 345734 346737 341512 338600 

TI_112 267224 270757 270730 268472 267881 267884 282025 287715 277159 273841 

TI_113 325940 331710 332726 328092 327785 327761 339414 354789 334960 337238 

TI_114 247599 248109 248667 247401 247571 247530 257608 261465 252855 251389 

TI_115 235915 236629 236781 237120 235968 235380 249417 258515 241645 241079 

TI_116 452701 463305 464622 454349 458805 456859 474372 482249 461946 472748 

TI_117 344453 346278 347349 345302 344121 344338 359109 365208 351955 353608 

TI_118 222724 222681 222943 222525 221619 221771 235221 238120 230684 224800 

TI_119 333274 338963 338574 334614 334450 332799 371818 409231 352913 354514 

TI_120 254805 260794 265544 254037 255466 253883 276408 298306 263380 272447 

AVG MIN 301811.7 305486.1 306368.2 302723.7 302695.2 302168 319112.6 330233.5 310900.9 312026.4 

222724 222681 222943 222525 221619 221771 235221 238120 230684 224800 

300 × 5 TI_121 153656 153656 153705 153656 153669 153673 154270 154920 153658 153792 

TI_122 409445 410560 410584 408673 408809 409397 413372 414947 411100 413836 

TI_123 263192 264533 264248 263215 262928 263343 275249 278539 267367 267762 

TI_124 183077 183247 183351 183079 183107 182876 190298 191004 185138 183998 

TI_125 175054 175054 175054 175054 175054 175054 175210 175528 175054 175163 

TI_126 151898 151900 151904 151898 151957 151898 152067 152387 151899 151957 

( continued on next page ) 
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Algorithm 1 

Basic iterated greedy algorithm. 

01: Begin 

02: Set parameters 𝑑, termination criterion, job sequence, 𝜋= ( 𝜋1 , 𝜋2 , ..., 𝜋𝐽 ) . 
03: 𝜋= 𝑁 𝐸𝐻 ( 𝜋) 
04: 𝜋= 𝐼 𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐼 𝑚𝑝𝑟𝑜𝑣𝑒 ( 𝜋) 
05: 𝜋𝑏𝑒𝑠𝑡 = 𝜋
06: While (termination criterion is not satisfied) do 

07: 𝜋or 𝑖𝑔𝑖𝑛 = 𝜋
08: 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐 𝑡𝑖𝑜𝑛 ( 𝜋or 𝑖𝑔𝑖𝑛 , 𝑑) , 𝜋or 𝑖𝑔𝑖𝑛 = 𝜋or 𝑖𝑔𝑖𝑛 ∖ 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 

09: 𝜋or 𝑖𝑔𝑖𝑛 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐 𝑡𝑖𝑜𝑛 ( 𝜋or 𝑖𝑔𝑖𝑛 , 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 ) 
10: 𝜋𝑡𝑒𝑚𝑝 = 𝐼 𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐼 𝑚𝑝𝑟𝑜𝑣𝑒 ( 𝜋or 𝑖𝑔𝑖𝑛 ) 
11: 𝜋 = 𝐴𝑐 𝑐 𝑒𝑝𝑡𝑎𝑛𝑐 𝑒𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 ( 𝜋𝑡𝑒𝑚𝑝 , 𝜋𝑏𝑒𝑠𝑡 , 𝜋) 
12: Endwhile 

13: Return 𝜋𝑏𝑒𝑠𝑡 

14: End 

Algorithm 2 

Proposed improved iterated greedy-swap algorithm. 

Input : 𝑑, termination criterion, Sequence 𝜋= ( 𝜋1 , 𝜋2 , ..., 𝜋𝐽 ) 
Output : 𝜋𝑏𝑒𝑠𝑡 

01: Begin 

02: 𝜋 = 𝑀 𝑀 𝐸( 𝜋) / ∗ heuristic algorithm which we used ∗ / 

03: 𝜋𝑏𝑒𝑠𝑡 = 𝜋
04: While (termination criterion is not satisfied) do 

05: 𝜋or 𝑖𝑔𝑖𝑛 = 𝜋
06: 𝜋or 𝑖𝑔𝑖𝑛 , 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐 𝑡𝑖𝑜𝑛 ( 𝜋or 𝑖𝑔𝑖𝑛 , 𝑑) 
07: 𝜋or 𝑖𝑔𝑖𝑛 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐 𝑡𝑖𝑜𝑛 ( 𝜋or 𝑖𝑔𝑖𝑛 , 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 ) 
08: 𝜋𝑡𝑒𝑚𝑝 = 𝜋or 𝑖𝑔𝑖𝑛 

09: If ( 𝜋𝑡𝑒𝑚𝑝 better than 𝜋𝑏𝑒𝑠𝑡 ) 

10: 𝜋𝑏𝑒𝑠𝑡 = 𝜋𝑡𝑒𝑚𝑝 

11: EndIf 

12: The following parts represent the main innovative contributions of this paper 

13: 𝜋𝑡𝑒𝑚𝑝 = 𝐿𝑜𝑐 𝑎𝑙𝑃 𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ( 𝜋𝑡𝑒𝑚𝑝 ) / ∗ based on swap strategy ∗ / 

14: If ( 𝜋𝑡𝑒𝑚𝑝 better than 𝜋) 

15: 𝜋 = 𝜋𝑡𝑒𝑚𝑝 

16: If ( 𝜋 better than 𝜋𝑏𝑒𝑠𝑡 ) 

17: 𝜋𝑏𝑒𝑠𝑡 = 𝜋
18 : EndIf 

19: EndIf 

20: Else 

21: 𝜋𝑡𝑒𝑚𝑝 = 𝐺 𝑙 𝑜𝑏𝑎𝑙 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ( 𝜋𝑡𝑒𝑚𝑝 ) / ∗ based on Half Swap strategy ∗ / 

22: 𝜋 = 𝜋𝑡𝑒𝑚𝑝 

23: If ( 𝜋 better than 𝜋𝑏𝑒𝑠𝑡 ) 

24: 𝜋𝑏𝑒𝑠𝑡 = 𝜋
25: EndIf 

25: EndIf 

26: Endwhile 

27: End 

Algorithm 3 

Destruction and construction phase. 

Input: 𝜋= ( 𝜋1 , 𝜋2 , ..., 𝜋𝐽 ) , parameter 𝑑

Output: 𝜋or 𝑖𝑔𝑖𝑛 

01: Begin 

02: 𝑐𝑜𝑢𝑛𝑡 = 1 , 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 = Φ, 𝜋or 𝑖𝑔𝑖𝑛 = 𝜋
03: While ( 𝑐𝑜𝑢𝑛𝑡 < = 𝑑) do 

04: 𝑛𝑢𝑚 = 𝑟𝑎𝑛𝑑()% 𝐽 + 1 
05: If ( 𝜋

𝑜𝑟𝑖𝑔𝑖𝑛 
𝑛𝑢𝑚 is not selected) 

06: Extract 𝜋
𝑜𝑟𝑖𝑔𝑖𝑛 
𝑛𝑢𝑚 from 𝜋or 𝑖𝑔𝑖𝑛 and add to 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 

07: 𝜋or 𝑖𝑔𝑖𝑛 = 𝜋or 𝑖𝑔𝑖𝑛 ∖{ 𝜋𝑜𝑟𝑖𝑔𝑖𝑛 𝑛𝑢𝑚 } , 𝑐𝑜𝑢𝑛𝑡 + + 
08: EndIf 

09: Endwhile 

10: For 𝑗 = 1 to 𝑑
11: 𝜋𝑗 = 𝜋𝑅𝑒𝑚𝑜𝑣𝑒 𝑗 

12: For 𝑝 = 1 to 𝐽 − 𝑑 // p is the insertion position 

13: insert 𝜋𝑗 in the p th position of 𝜋or 𝑖𝑔𝑖𝑛 

14: calculate the energy consumption value, 𝑀𝑖 𝑛 𝐸𝐶 

15: EndFor 

16: select position p with minimal 𝑀𝑖 𝑛 𝐸𝐶 , and insert 𝜋𝑗 into the p th of 𝜋or 𝑖𝑔𝑖𝑛 

17: EndFor 

18: End 

Algorithm 5 

IG half-swap 

Input: 𝜋𝑡𝑒𝑚𝑝 

Output: 𝜋𝑡𝑒𝑚𝑝 

01: Begin 

02: Sequence 𝜋𝑡𝑒𝑚𝑝 is divided equally into subsequences 𝜋𝐹𝑟𝑜𝑛𝑡 and 𝜋𝐵𝑎𝑐𝑘 

03: If (The energy consumption of 𝜋𝐵𝑎𝑐𝑘 is lower than 𝜋𝐹𝑟𝑜𝑛𝑡 ) 

04: 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 = 𝜋𝐹𝑟𝑜𝑛𝑡 / ∗ improve 𝜋𝐹𝑟𝑜𝑛𝑡 ∗ / 

05: For 𝑝 = 1 to 𝑆𝑖𝑧𝑒𝑜𝑓 ( 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 ) / ∗ select these jobs in order ∗ / 

06: For 𝑗 = 1 to 𝑆𝑖𝑧𝑒𝑜𝑓 ( 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 ) / ∗ swap with other jobs ∗ / 

07: If ( 𝜋
𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 
𝑝 is not equal to 𝜋

𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 
𝑗 

) 

08: Swap 𝜋
𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 
𝑝 with 𝜋

𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 
𝑗 

09: EndIf 

10: If ( 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 is better than 𝜋𝐹𝑟𝑜𝑛𝑡 ) 

11: 𝜋𝐹𝑟𝑜𝑛𝑡 = 𝜋𝐹𝑟𝑜𝑛𝑡 _ 𝑡𝑒𝑚𝑝 

12: Merge 𝜋𝐹𝑟𝑜𝑛𝑡 and 𝜋𝐵𝑎𝑐𝑘 , denoting the new sequence as 𝜋𝑡𝑒𝑚𝑝 _ 𝑛𝑒𝑤 

13: If ( 𝜋𝑡𝑒𝑚𝑝 _ 𝑛𝑒𝑤 is better than 𝜋𝑡𝑒𝑚𝑝 ) 

14: 𝜋𝑡𝑒𝑚𝑝 = 𝜋𝑡𝑒𝑚𝑝 _ 𝑛𝑒𝑤 

15: EndIf 

16: EndIf 

17: EndFor 

18: EndFor 

19: ElseIf (The energy consumption of 𝜋𝐹𝑟𝑜𝑛𝑡 is lower than 𝜋𝐵𝑎𝑐𝑘 ) 

20: Similar to the steps performed above. 

21: EndIf 

22: End 
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