
Egyptian Informatics Journal 27 (2024) 100509

A
1
a

Contents lists available at ScienceDirect

Egyptian Informatics Journal

journal homepage: www.sciencedirect.com

Full length article

A single-individual based variable neighborhood search algorithm for the
blocking hybrid flow shop group scheduling problem
Zhongyuan Peng a, Haoxiang Qin b,∗

a Department of Basic Courses, Maoming Polytechnic, Guangdong, 525000, China
b School of Software Engineering, South China University of Technology, Guangdong, 510006, China

A R T I C L E I N F O

Keywords:
Hybrid flow shop group scheduling problem
Blocking constraints
Energy consumption
Single-individual based algorithm
Neighborhood search strategy

A B S T R A C T

The Blocking Hybrid Flow Shop Group Scheduling Problem (BHFGSP) is prevalent within the manufacturing
industry, where the ordering of groups poses a significant challenge for dispatchers. Moreover, the blocking
constraints associated with jobs significantly influence energy consumption, yet these constraints are often
overlooked in algorithm design. To address these issues effectively, a single-individual-based variable neigh-
borhood search strategy is introduced. For the challenge of group ordering, a group-based neighborhood search
strategy is proposed. This strategy is complemented by a job-based neighborhood search strategy to tackle the
issues of blocking and job sequencing. These two neighborhood search strategies are designed to enhance the
performance of the algorithm significantly. Furthermore, to augment the local search abilities of the proposed
algorithm, the concept of a single-individual approach from the iterated greedy algorithm is integrated. The
performance of the proposed algorithm is validated through 36 instances, demonstrating its efficiency in solving
BHFGSPs compared to state-of-the-art algorithms. Notably, the proposed algorithm achieves a reduction in
energy consumption by an average of 58% to 63.4% compared to previous best solutions.
1. Introduction

The hybrid flow shop scheduling problem (HFSP) is prevalent in
manufacturing production [1–4]. Unlike the traditional Flow Shop
Scheduling Problem (FSP), there exists at least one stage in HFSP with
the number of machines greater than 1 [5–7]. Moreover, in FSP, the
buffers between adjacent machines are infinite, and jobs can be stored
infinitely in the buffers [8,9]. However, in real production scenarios,
such as concrete block production [10], chemical production [11],
steelmaking [12], there is no buffer between adjacent machines to
store finished jobs due to production costs, product characteristics, or
technical conditions [13,14]. This causes a situation where the job is
blocked on the current machine, which in turn prolongs the completion
time of the jobs and results in energy wastage [15–17]. The problem is
also termed as blocking hybrid flow shop scheduling problem (BHFSP).
In order to solve the BHFSP, it is important to use a sequencing strategy
that can effectively reduce the blocking of jobs. By using this strategy,
it can help companies to improve productivity and reduce unnecessary
waste of resources.

With the continuous development and application of group and
manufacturing unit technologies, the group scheduling problem has
received extensive attention from researchers [18]. A group consists of
multiple jobs with similar production requirements (e.g., setup, tooling,

∗ Corresponding author.
E-mail addresses: 2004010041@mmpt.edu.cn (Z. Peng), 987352978@qq.com (H. Qin).

product attributes) [19]. In the real world, grouping technology has
been widely used in many areas such as the automotive assembly
industry [18,20], paint shops [21], printed circuit boards [22], and
upholstered furniture [23]. The utilization of production in groups
effectively simplifies the ordering process, shortens the completion
time, reduces energy consumption, and thus improves the reliability of
factory processing [24]. In the group scheduling problem, the ordering
issue of the groups will directly affect the setting of machines, which
in turn affects the objective value [25]. To improve the productivity as
much as possible and reduce the unnecessary waste of resources, it is
necessary to design efficient group ordering strategies [26].

HFSP and BHFSP have been demonstrated to be NP-hard prob-
lems [27–29]. When the size of the problem becomes progressively
larger, traditional mathematical methods or exact algorithms will have
difficulties in solving the problem [30,31]. Therefore, to solve the
aforementioned problems, heuristic or meta-heuristic algorithms have
been employed in most of the studies, such as Iterated Greedy Algo-
rithm (IGA) [32], Artificial Bee Colony Algorithm [33], and Memetic
Algorithm [34]. In addition, if the grouping of jobs is considered, the
difficulty of solving the problem will be further increased. So far, there
is no literature on problems that consider both blocking constraints and
job grouping with the objective of minimizing energy consumption.
vailable online 30 July 2024
110-8665/© 2024 The Authors. Published by Elsevier B.V. on behalf of Faculty of
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

https://doi.org/10.1016/j.eij.2024.100509
Received 27 May 2024; Received in revised form 30 June 2024; Accepted 20 July
Computers and Artificial Intelligence, Cairo University. This is an open access
nd/4.0/).

2024

https://www.sciencedirect.com
https://www.sciencedirect.com
mailto:2004010041@mmpt.edu.cn
mailto:987352978@qq.com
https://doi.org/10.1016/j.eij.2024.100509
https://doi.org/10.1016/j.eij.2024.100509
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eij.2024.100509&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
In the enterprise, how to reduce the energy consumption caused by
group sorting and job blocking is an urgent concern for the dispatchers,
and the existing techniques or strategies cannot cope with the above
two situations at the same time. Therefore, it is necessary to design
an effective optimization algorithm to solve this problem. This paper
addresses the problem regarding blocking and group ordering that
exists in today’s organizations. At the same time, this paper not only
fills the knowledge gap in the field of research, but also helps the
dispatchers save their time in scheduling assignments.

In this paper, BHFGSP encoding and decoding rules are proposed
with the objective of minimizing energy consumption. Then, a single-
individual based variable neighborhood search algorithm (SIVNS) is
designed to solve BHFGSP. Compared with the state-of-the-art op-
timization algorithms, this algorithm has the advantages of simpler
structure, easy to implement, and better search ability.

The contributions of this paper are given as follows.

• This paper designs a neighborhood search strategy based on
grouping of jobs, which solves the sorting challenges of grouping
as well as the issues of high overhead of machine setting.

• This paper designs a neighborhood search strategy based on job
blocking and job sorting, which reduces the impact of blocking
constraints on energy consumption.

• The results demonstrate that the proposed algorithm consumes
58%-63.4% less average energy than the current state-of-the-art
algorithms.

The rest of this paper is shown as follows. Section 2 reviews the
literature related to the research problem of this paper. In Section 3,
the BHFGSP with minimizing the objective of energy consumption is
described. In Section 4, the proposed SIVNS is elaborated, which mainly
consists of initialization, group-based neighborhood search strategy and
job-based neighborhood search strategy. The simulation and analysis
are carried out in Section 5. Section 6 concludes the paper and provides
an outlook for future research.

2. Literature review

In this section, we review some studies related to the problems
studied in this paper, such as HFSP, BHFSP and group shop schedul-
ing. HFSP is a discrete combinatorial optimization problem. BHFSP is
based on HFSP considering blocking constraints. Moreover, this section
reviews some related studies on group shop scheduling problems.

HFSP has a very wide range of application scenarios in modern
intelligent and smart manufacturing systems [2,3]. In these application
scenarios, the utilization of parallel production mode can effectively
improve the processing efficiency of factories and reduce unnecessary
time cost or energy waste. Many optimization algorithms have been
developed to solve HFSP effectively. In [35], a hybrid evolutionary
algorithm using two solution representations is proposed to solve the
HFSP for makespan minimization. Then, a multi-objective decomposi-
tion evolutionary algorithm based on ant colony optimization behavior
is proposed to solve the problem from the point of view of factory
production and management, and the duration and total electricity cost
are considered as the optimization objectives [36]. In addition, there
are some meta-heuristic algorithms with good performance, such as
particle swarm optimization algorithm [37], artificial bee colony algo-
rithm [38]. Although all the above algorithms find good solutions, some
studies have argued that more efficient strategies should be introduced
to solve the multi-objective optimization problem for HFSP [39–41].
From the above literature, it is clear that all meta-heuristic algorithms
perform well in solving HFSPs, but they do not consider and study
HFSPs with job blocking and group situations.

BHFSP is an extension of HFSP that is more complex and has no
buffers between adjacent machines to store finished jobs. It has not
2

been studied as much as HFSP. Specifically, after a job is completed
in the previous stage, if there is no available machine in the next stage,
then the job blocks on the current processing machine. So far, math-
ematic models of the problem has been proposed [42–44]. However,
the aforementioned studies only addressed small-scale BHFSPs, and
the large-scale problems were either unsolved or unsolvable. This is
due to the fact that the computation time is exploding as the problem
size continuously grows. Therefore, a better solution cannot be found
in the limited time [45]. Consequently, a number of meta-heuristic
algorithms that can solve large-scale problems have been proposed,
such as the classical simulated annealing (SA) algorithm [46] and
genetic algorithm (GA) [47]. The above-mentioned algorithms can
solve the BHFSP efficiently. Moreover, some algorithms have been
used to solve the problem with different objectives such as optimized
energy consumption [48], due date window [49], total tardiness and
earliness [15]. Although the meta-heuristic algorithms proposed in the
above literature can solve both small and large scale BHFSPs. However,
the case of groups of jobs is not considered in BHFSP, The setup time
of the group on different machines is also not taken into account.

As the group technology of jobs continues to grow, the studies on
its related applications are also increasing [50–52]. The methods in
these studies mainly include mathematical models, heuristic and meta-
heuristic algorithms. In [53], a polynomial optimization method was
proposed to solve the job group problem. In [54], two mathematical
models were proposed to optimize the total energy consumption. In the
above-mentioned studies, grouping of jobs can effectively reduce the
setup time of different machines and improve the processing efficiency
of the factory. Additionally, the group technique can reduce thorny
issues such as production lead time and raw material inventory [55].
In addition, heuristic and meta-heuristic algorithms have been carried
out so far for solving the group problems. In [50], an improved con-
structive heuristic algorithm was proposed to minimize the makespan
in group scheduling. In [56], a hybrid meta-heuristic genetic algorithm
was considered to be introduced to solve the grouping scheduling
problem of jobs. The researcher also considered blocking constraints
in the group problem and devised effective meta-heuristics to solve the
problem [57]. However, this paper did not consider the situations of
parallel machines. Qin et al. [58] considered the situation of group
in BHFSP. However, they only optimized makespan without energy
consumption, and the structure of the algorithm was more complex and
needed further improvement.

The above studies have proposed different algorithms that can
address BHFSP or group scheduling. However, there are few strategies
to change the job ordering based on job blocking. This paper bridges the
gap in the design of strategies and proposes a single-individual based
variable neighborhood search algorithm. In the proposed algorithm,
the single-individual mechanism of the IG algorithm is introduced,
which has the advantages of simple structure and easy implementation,
and improves the quality of the solution by continuously optimizing
a solution. Subsequently, a group-based and a job-based neighbor-
hood search strategies are proposed, respectively. The group-based
neighborhood search strategy (𝐺_𝑁𝑆) can effectively solve the group
ordering problem and reduce the machine setup time. The job-based
neighborhood search strategy (𝐽 _𝑁𝑆) reduces the impact of blocking
on energy consumption by improving the ordering of jobs in a group.

3. Problem statement

In this section, the symbol definition, encoding and decoding rules
for BHFGSP are given.

3.1. Problem formulation

See [58], for ease of description, the following parameters and
variables are given as follows. See [25,26], we also denote a collection

of jobs grouped into one set as a family in our problem descriptions.

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin

𝑀
𝑚
𝐹
𝑓

𝜔

𝐸

𝑐

𝐸

𝑃

𝐼

𝐵

𝑆

O

𝑀

i
a
s
g
h
a
s
j
a
𝑗
s
c
d
s
f
s
t
t
𝑐
j
c
(
s
E
E
t
e
t

w
j
T
o
j

Notations:

𝑆 Number of stages.
𝑠 Index of stages, 𝑠 ∈ {1, 2,… , 𝑆}.

𝑠 Number of parallel machines at stage 𝑠.
Index of machines, 𝑚 ∈

{

1, 2,… ,𝑀𝑠
}

.
Number of families.

, 𝑓 ′ Index of families, 𝑓, 𝑓 ′ ∈ {0, 1,… , 𝐹 }, 0 is
the index of the dummy family, which represents
represents the start and end of the family sequence
on a machine.

𝑓 Set of jobs in family 𝑓 .
𝑁 Number of jobs.
𝑗, 𝑗′ Index of jobs, 𝑗, 𝑗′ ∈ {1,… , 𝑁}.
𝑝𝑗,𝑠 Processing time of job j at stage s.
𝑠𝑒𝑡𝑓,𝑓 ′ ,𝑠 Setup time from family 𝑓 to family 𝑓 ′ at stage 𝑠,

𝑠𝑒𝑡𝑠,𝑓 ,𝑓 = 0. An initial setup time 𝑠𝑒𝑡0,𝑓 ,𝑠 is
needed if the family 𝑓 is the first family at stage 𝑠.

𝐸𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑠 Energy consumption per unit time of processing.

𝐸𝐶𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔
𝑠 Energy consumption per unit time of blocking.

𝐸𝐶𝐼𝑑𝑙𝑒
𝑠 Energy consumption per unit time of idle.

𝐸𝐶𝑆𝑒𝑡𝑡𝑖𝑛𝑔
𝑠 Energy consumption per unit time of setting.

𝑃𝐸𝐶 Total Energy consumption of processing.
𝐵𝐸𝐶 Total Energy consumption of blocking.
𝐼𝐸𝐶 Total Energy consumption of idle.
𝑆𝐸𝐶 Total Energy consumption of setting.
ℎ Sufficiently large positive number.

Decision variables:

𝑐𝑗,𝑠 Completion time of job j at stage s.
𝑑𝑗,𝑠 Departure time of job j at stage s.
𝑠,𝑚 The shutdown time of machine m at stage s.

𝑥𝑓,𝑓 ′ ,𝑠 Binary decision variable, 1 if the family 𝑓 ′ is an
immediate successor of the family 𝑓 at stage 𝑠,
0 otherwise.

𝑦𝑗,𝑗′ Binary decision variable, 1 if the job 𝑗 precedes the
job 𝑗′ which belongs to the same family with
the job 𝑗, 0 otherwise. The values of the decision
variables are meaningful when the job 𝑗 and 𝑗′

are from the same family.
𝑧𝑗,𝑠,𝑚 Binary decision variable, 1 if the job 𝑗 is processed

on the machine 𝑚 of stage 𝑠, 0 otherwise.

Constraints:
𝐹
∑

𝑓 ′=0, 𝑓 ′≠𝑓
𝑥𝑓,𝑓 ′ ,𝑠 = 1, ∀𝑓 ∈ {1, 2,… , 𝐹 } , ∀𝑠 ∈ {1, 2,… , 𝑆} (1)

𝐹
∑

𝑓=0, 𝑓≠𝑓 ′
𝑥𝑓,𝑓 ′ ,𝑠 = 1, ∀𝑓 ′ ∈ {1, 2,… , 𝐹 } , ∀𝑠 ∈ {1, 2,… , 𝑆} (2)

𝐹
∑

𝑓 ′=1
𝑥0,𝑓 ′ ,𝑠 ≤ 𝑀𝑠, ∀𝑠 ∈ {1, 2,… , 𝑆} (3)

𝐹
∑

𝑓=1
𝑥𝑓,0,𝑠 ≤ 𝑀𝑠, ∀𝑠 ∈ {1, 2,… , 𝑆} (4)

𝐹
∑

𝑓 ′=1
𝑥0,𝑓 ′ ,𝑠 =

𝐹
∑

𝑓=1
𝑥𝑓,0,𝑠, ∀𝑠 ∈ {1, 2,… , 𝑆} (5)

𝑦𝑗,𝑗′ + 𝑦𝑗′ ,𝑗 = 1, ∀𝑓 ∈ {1, 2,… , 𝐹 } , ∀𝑗, 𝑗′ ∈ 𝜔𝑓 , 𝑗
′ > 𝑗, ∀𝑠 ∈ {1, 2,… , 𝑆}

(6)

𝑐𝑗′ ,𝑠 ≥ 𝑑𝑗,𝑠 + 𝑝𝑗′ ,𝑠 +
(

𝑦′𝑗,𝑗′ − 1
)

⋅ ℎ,
′ ′

(7)
3

∀𝑓 ∈ {1, 2,… , 𝐹 } , ∀𝑗, 𝑗 ∈ 𝜔𝑓 , 𝑗 ≠ 𝑗, ∀𝑠 ∈ {1, 2,… , 𝑆} m
𝑐𝑗′ ,𝑠 ≥ 𝑑𝑗,𝑠 + 𝑠𝑒𝑡𝑓,𝑓 ′ ,𝑠 + 𝑝𝑗′ ,𝑠 +
(

𝑥𝑓,𝑓 ′ ,𝑠 − 1
)

⋅ ℎ, ∀𝑓 ∈ {1, 2,… , 𝐹 } ,

∀𝑓 ′ ∈ {1, 2,… , 𝐹 } , 𝑓 ≠ 𝑓 ′,

∀𝑗 ∈ 𝜔𝑓 , ∀𝑗′ ∈ 𝜔𝑓 ′ , ∀𝑠 ∈ {1, 2,… , 𝑆}

(8)

𝑐𝑗,𝑠 ≥ 𝑠𝑒𝑡0,𝑓 ,𝑠 + 𝑝𝑗,𝑠 +
(

𝑥0,𝑓 ,𝑠 − 1
)

⋅ ℎ, ∀𝑓 ∈ {1, 2,… , 𝐹 } ,

∀𝑗 ∈ 𝜔𝑓 , ∀𝑠 ∈ {1, 2,… , 𝑆}
(9)

𝑑𝑗,𝑠 ≥ 𝑐𝑗,𝑠, ∀𝑗 ∈ {1, 2,… , 𝑁} , ∀𝑠 ∈ {1, 2,… , 𝑆} (10)

𝑗,𝑠+1 = 𝑑𝑗,𝑠 + 𝑝𝑗,𝑠+1, ∀𝑗 ∈ {1, 2,… , 𝑁} , ∀𝑠 ∈ {1, 2,… , 𝑆 − 1} (11)

𝑠,𝑚 ⩾ 𝑑𝑗,𝑠, ∀𝑗 ∈ {1, 2,… , 𝑁} , ∀𝑠 ∈ {1, 2,… , 𝑆} , ∀𝑚 ∈
{

1, 2,… ,𝑀𝑠
}

(12)

𝐸𝐶 =
𝑆
∑

𝑠=1

𝐽
∑

𝑗=1

(

𝐸𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑠 ⋅ 𝑝𝑗,𝑠

)

(13)

𝐸𝐶 =
𝑆
∑

𝑠=1
𝐸𝐶𝐼𝑑𝑙𝑒

𝑠 ⋅

(𝑀𝑠
∑

𝑚=1
𝐸𝑠,𝑚 −

𝐽
∑

𝑗=1
𝑝𝑗,𝑠 −

𝐽
∑

𝑗=1

(

𝑑𝑗,𝑠 − 𝑐𝑗,𝑠
)

)

(14)

𝐸𝐶 =
𝑆
∑

𝑠=1

𝐽
∑

𝑗=1

(

𝐸𝐶𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔
𝑠 ⋅

(

𝑑𝑗,𝑠 − 𝑐𝑗,𝑠
))

(15)

𝐸𝐶 =
𝐹
∑

𝑓=1

𝐹
∑

𝑓 ′=1

𝑆
∑

𝑠=1

(

𝐸𝐶𝑆𝑒𝑡𝑡𝑖𝑛𝑔
𝑠 ⋅ 𝑠𝑒𝑡𝑓,𝑓 ′ ,𝑠 ⋅ 𝑥𝑓,𝑓 ′ ,𝑠

)

(16)

bjective:

𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐸𝐶 = (𝑃𝐸𝐶 + 𝐼𝐸𝐶 + 𝐵𝐸𝐶 + 𝑆𝐸𝐶) (17)

Constraints (1) and (2) make sure that each family has a unique
mmediate predecessor and successor at every stage. Constraints (3)
nd (4) specify that the dummy family can only act as an immediate
uccessor or predecessor to a family a maximum of 𝑀𝑠 times at any
iven stage 𝑠. Constraint (5) mandates that the dummy family must
ave an equal count of immediate successors and predecessors across
ll stages. Constraint (6) dictates that for jobs 𝑗 and 𝑗′ belonging to the
ame family 𝑓 , one must be processed before the other. If job 𝑗 precedes
ob 𝑗′ in processing, as per constraint (7), the completion time of job 𝑗′

t stage 𝑠 must be no earlier than the sum of the departure time of job
and its processing time 𝑝𝑗′ ,𝑠. For two consecutive families 𝑓 and 𝑓 ′ at

tage 𝑠, where 𝑓 ′ directly follows 𝑓 , constraint (8) mandates that the
ompletion time of job 𝑗′ from family 𝑓 ′ must be at least the sum of the
eparture time of job 𝑗 from family 𝑓 , the processing time 𝑝𝑗′ ,𝑠, and the
etup time 𝑠𝑒𝑡𝑓,𝑓 ′ ,𝑠. The initial setup time 𝑠𝑒𝑡0,𝑓 ,𝑠 for the first job of a
amily at stage 𝑠 is taken into account by constraint (9). Constraint (10)
tates that a job’s departure time cannot be earlier than its completion
ime at the same stage. If the departure time 𝑑𝑗,𝑠 equals the completion
ime 𝑐𝑗,𝑠, job 𝑗 is unobstructed at stage 𝑠. However, if 𝑑𝑗,𝑠 exceeds
𝑗,𝑠, job 𝑗 is blocked at that stage. Constraint (11) establishes that a
ob’s completion time is calculated by adding its processing time at the
urrent stage to its departure time from the preceding stage. Constraint
12) guarantees that the shutdown time of the machine at a certain
tage is not less than the departure time of the job on the same machine.
q. (13) represents the processing energy consumption for all jobs.
q. (14) indicates the total idle energy consumption. Eq. (15) denotes
he total blocking energy consumption. Eq. (16) expresses the setup
nergy consumption of all machines. Eq. (17) represents the objective
o be optimized: total energy consumption.

In the BHFGSP, a factory consists of 𝑆 distinct stages, each equipped
ith 𝑀𝑠

(

𝑀𝑠 = 1, 2,… ,𝑀𝑆
)

machines operating in parallel to process
obs. There are no intermediate buffers between any adjacent machines.
he problem involves 𝐹 (1, 2,… , 𝑓 ,… , 𝐹) families need to be processed
n the machines, where the set of jobs in family of jobs, with the set of
obs belonging to family f represented as 𝜔𝑓 . Each job j within family f

ust traverse all stages without deviation. Furthermore, all jobs from

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin

a
𝑠
s

f

1
1
1
1
1

2
2
2
2
2

a
b
t
s

r
c
i

Table 1
The processing time of all jobs at every stage.
Family Job Stage1 Stage2 Stage3

1 1 3 6 1
2 3 3 3

2 3 1 7 7
4 1 2 2

3 5 3 3 3
6 2 2 6
7 4 2 3

4 8 4 3 4

Table 2
The setup time of families at every stage.

Stage1 Stage2 Stage3

Family 0 1 2 3 4 Family 0 1 2 3 4 Family 0 1 2 3 4

0 0 3 3 5 6 0 0 5 2 6 4 0 0 8 4 5 6
1 0 0 3 5 4 1 0 0 3 2 4 1 0 0 3 2 7
2 0 6 0 4 8 2 0 7 0 8 5 2 0 7 0 6 5
3 0 4 5 0 4 3 0 2 3 0 5 3 0 5 4 0 4
4 0 4 5 5 0 4 0 3 3 5 0 4 0 5 4 3 0

the same family are required to be processed on the same machine.
Prior to processing, it is necessary to account for the family machine
setup time denoted as 𝑠𝑒𝑡𝑠,𝑓1 ,𝑓2 when transitioning between family 𝑓1
nd 𝑓2 at stage s. The machine setup time for the initial family at stage
is represented by 𝑠𝑒𝑡𝑠,0,𝑓2 . The processing time required for job j at

tage s is designated as 𝑝𝑗,𝑠. The objective of this paper is to minimize
the energy consumption of BHFGSP. To further elucidate the problem,
the following assumptions are made:

(1) Each job must be processed through all stages in sequence;
skipping stages or completing the process before all stages are
addressed is not permitted.

(2) The total processing time for each job encompasses both the
actual processing time and any transportation time needed be-
tween stages.

(3) A machine can only process one job at a time, and similarly, a
job is processed by only one machine at any given moment.

(4) Once processing of a job from a particular family begins on a
machine, it must continue without any interruption from jobs of
other families until completion.

(5) All jobs are ready to be processed at time zero.

3.2. Encoding and decoding procedure

To address large-scale and intricate combinatorial optimization
problems, efficient encoding and decoding techniques are indispensable
for diminishing computational demands and elevating the caliber of
solutions [59]. See [26,60–62], in tackling the BHFGSP, we employ
integer encoding to represent the solution. A solution is encoded as
an ordered pair (𝜋, 𝜏), with 𝜋 representing a collection of 𝐹 families,
expressed as 𝜋 =

{

𝜋1, 𝜋2,… , 𝜋𝑙 ,… , 𝜋𝐹
}

. 𝜏 signifies the sequence of jobs
for each family, where 𝜏 =

{

𝜏1,… , 𝜏𝑙 ,… , 𝜏𝐹
}

. Each 𝜏 encapsulates a
sequence of jobs, 𝜏𝑙(𝜏𝑙 =

{

𝜏𝑙,1,… , 𝜏𝑙,𝑛𝑙
}

, where , 𝑛𝑙 is the number of
jobs in family 𝜋𝑙.

The decoding rule is shown in Algorithm 1. For convenience of
description, we denote the time available to the machine 𝑚𝑠 at stage 𝑠
as 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

. In this decoding rule (Lines 2–32), we first schedule the
family. Subsequently, for each job in the family, we assign it a machine
for each stage. In Lines 5–8 of step 1, if machine 𝑚𝑠 has not processed
a job, we will select 𝑚𝑠 as the processing machine for jobs of the same
amily. In Lines 8–11 of step 1, if machine 𝑚𝑠 has processed jobs, the

machine with the minimum 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠
+𝑆𝑒𝑡𝑠,𝑓1 ,𝑓2 value will be selected
4

as the processing machine. Additionally, after selecting the machine, r
the set energy consumption 𝑆𝐸𝐶 of the machine is calculated. In step
2, after selecting the appropriate machine according to step 1, jobs in
the selected family 𝜋𝑓 are scheduled for processing in the first stage.
The processing energy consumption 𝑃𝐸𝐶 is calculated (Lines 15–18).
In Lines 19–30, schedule all jobs in the selected family in stages 2 to 𝑆.
Based on the completion time of the job in the previous stage and the
idle start time of the selected machine in the current stage, the energy
consumption of the job being blocked and the machine being idle is
computed. In step 3, when all the jobs of all the families have been
completed, the optimization objective of this paper will be calculated:
the Total Energy Consumption 𝑇𝐸𝐶. This decoding rule is simplified
to DR() when used in Section 4. In addition, one point to note is that
all the algorithms in this paper are implemented on the basis of the
aforementioned decoding rule.

Algorithm 1 Decoding rule of energy-efficient BHFGSP
Input: Solution (𝜋, 𝜏)
Output: 𝑇𝐸𝐶 = 𝑃𝐸𝐶 + 𝐼𝐸𝐶 + 𝐵𝐸𝐶 + 𝑆𝐸𝐶
1: 𝑆𝐸𝐶 = 0
2: for 𝑓 = 1 𝐭𝐨 𝐹 do
3: for 𝑠 = 1 𝐭𝐨 𝑆 do ⊳ Step 1: Select the appropriate machine at each stage
4: Find the family 𝜋𝑓 in 𝜋
5: if 𝑚𝑠 has not processed a job then
6: 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

= 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠
+ 𝑆𝑒𝑡𝑠,0,𝑓2

7: 𝑆𝐸𝐶 = 𝑆𝐸𝐶 + 𝑆𝑒𝑡𝑠,0,𝑓2 ⋅ 𝐸𝐶𝑆𝑒𝑡𝑡𝑖𝑛𝑔
𝑠

8: else
9: Find 𝑚𝑠 that has the minimum 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

+ 𝑆𝑒𝑡𝑠,𝑓1 ,𝑓2 value
0: 𝑆𝐸𝐶 = 𝑆𝐸𝐶 + 𝑆𝑒𝑡𝑠,𝑓1 ,𝑓2 ⋅ 𝐸𝐶𝑆𝑒𝑡𝑡𝑖𝑛𝑔

𝑠
1: end if
2: end for
3: 𝑃𝐸𝐶 = 0, 𝐵𝐸𝐶 = 0, 𝐼𝐸𝐶 = 0
4: for 𝑗 = 𝜏𝑓,1 𝐭𝐨 𝜏𝑓,𝑛𝑓 do ⊳ Step 2: Schedule the jobs on the selected
machines

15: 𝑐𝑗,1 = 𝑀𝐼𝑑𝑙𝑒1,𝑚1
+ 𝑝𝑗,1

16: 𝑃𝐸𝐶 = 𝑃𝐸𝐶 + 𝑝𝑗,1 ⋅ 𝐸𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠
1

17: 𝑑𝑗,1 = 𝑐𝑗,1
18: 𝑀𝐼𝑑𝑙𝑒1,𝑚1

= 𝑑𝑗,1
19: for 𝑠 = 2 𝐭𝐨 𝑆 do
20: 𝑐𝑗,𝑠 = max

{

𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠
, 𝑐𝑗,𝑠−1

}

+ 𝑝𝑗,𝑠
21: if 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

> 𝑐𝑗,𝑠−1 then
22: 𝐵𝐸𝐶 = 𝐵𝐸𝐶 + (𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

− 𝑐𝑗,𝑠−1) ⋅ 𝐸𝐶𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔
𝑠

23: else
24: 𝐼𝐸𝐶 = 𝐼𝐸𝐶 + (𝑐𝑗,𝑠−1 −𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

) ⋅ 𝐸𝐶𝐼𝑑𝑙𝑒
𝑠

5: end if
6: 𝑑𝑗,𝑠 = 𝑐𝑗,𝑠
7: 𝑀𝐼𝑑𝑙𝑒𝑠,𝑚𝑠

= 𝑑𝑗,𝑠
8: 𝑑𝑗,𝑠−1 = 𝑐𝑗,𝑠 − 𝑝𝑗,𝑠
9: 𝑀𝐼𝑑𝑙𝑒𝑠−1,𝑚𝑠−1

= 𝑑𝑗,𝑠−1
30: end for
31: end for
32: end for
33: 𝑇𝐸𝐶 = 𝑃𝐸𝐶 + 𝐼𝐸𝐶 + 𝐵𝐸𝐶 + 𝑆𝐸𝐶 ⊳ Step 3: Obtain the total energy

consumption (objective value)

3.3. An example of BHFGSP

In order to describe the decoding rule of BHFGSP more intuitively
and conveniently, we give a concise and complete Gantt chart of one
example: F = 4, N = 8, S = 3, 𝜏1 = {1, 2}, 𝜏2 = {3, 4}, 𝜏3 = {5, 6, 7},
nd 𝜏4 = {8}, which are shown in Fig. 1. All these jobs are scheduled
ased on the

(

𝜏1, 𝜏2, 𝜏3, 𝜏4
)

arranged in advance. Tables 1 and 2 give
he processing time of distinct jobs and setup time of families at every
tage. The details are shown as follows:

As shown in Fig. 1, different jobs, blocking, and setup times are
epresented by rectangular blocks of different colors. The total energy
onsumption value to be optimized in this paper is the sum of machine
dle energy consumption between all rectangular blocks and different
ectangular blocks.

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
Fig. 1. The Gantt chart of the BHFGSP.
4. Proposed algorithm

This section presents the details of the SIVNS algorithm, which
consists of the following parts, i.e., the framework of the proposed
algorithm, the initialization method, the group-based neighborhood
search strategy, and the job-based neighborhood search strategy.

Algorithm 2 The framework of SIVNS.
Input: 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟, 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
Output:

(

𝜋𝑏𝑒𝑠𝑡, 𝜏𝑏𝑒𝑠𝑡
)

1: 𝑖𝑡𝑒𝑟 ← 1
2:

(

𝜋𝑁 , 𝜏𝑁
)

← 𝑁𝐸𝐻_𝐹𝑎𝑚 () ∕∕𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 3
3: (𝜋, 𝜏) ←

(

𝜋𝑁 , 𝜏𝑁
)

4:
(

𝜋𝑏𝑒𝑠𝑡, 𝜏𝑏𝑒𝑠𝑡
)

← (𝜋, 𝜏)
5: while 𝑖𝑡𝑒𝑟 ⩽ 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 do
6: (𝜋𝐺 , 𝜏𝐺) ← 𝐺_𝑁𝑆((𝜋𝑁 , 𝜏𝑁)) ∕∕𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 4
7: (𝜋𝐽 , 𝜏𝐽) ← 𝐽 _𝑁𝑆((𝜋𝐺 , 𝜏𝐺)) ∕∕𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 5
8: if 𝐷𝑅((𝜋𝐽 , 𝜏𝐽)) ⩽ 𝐷𝑅((𝜋, 𝜏)) then
9: 𝐷𝑅((𝜋, 𝜏)) ← 𝐷𝑅((𝜋𝐽 , 𝜏𝐽))

10: if 𝐷𝑅((𝜋, 𝜏)) ⩽ 𝐷𝑅((𝜋𝑏𝑒𝑠𝑡, 𝜏𝑏𝑒𝑠𝑡)) then
11: 𝐷𝑅((𝜋𝑏𝑒𝑠𝑡, 𝜏𝑏𝑒𝑠𝑡)) ← 𝐷𝑅((𝜋, 𝜏))
12: end if
13: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ⩽ 𝑒𝑥𝑝{−(𝐷𝑅((𝜋𝐽 , 𝜏𝐽)) − 𝐷𝑅((𝜋, 𝜏)))∕𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒} then

∕∕𝑆𝐴 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
14: (𝜋, 𝜏) ← (𝜋𝐽 , 𝜏𝐽)
15: end if
16: end while

return
(

𝜋𝑏𝑒𝑠𝑡, 𝜏𝑏𝑒𝑠𝑡
)

Inspired by the single-individual framework of the IG algorithm, we
also propose a single-individual based variable neighborhood search
algorithm. The neighborhood search strategies further improve the
current solution by perturbing the scheduling order of groups, random
jobs, and blocking jobs. This framework can effectively improve the
local search ability of the algorithm without dispersing too much effort
into many poorly performing solutions. A concise framework for this
algorithm is shown in Algorithm 2.

In Algorithm 2, the proposed SIVNS preserves the main framework
of the novel IG (NIG) algorithm in [58]. Its components are as follows:
(1) The Nawaz, Enscore, and Ham initialization method related to the
group (NEH_Group) is employed to create the initial sequence. (2)
Group-based neighborhood search strategies are proposed to address
the group ordering issue as well as the situation of machine settings
5

to reduce the total energy consumption. (3) A job-based neighborhood
search strategy is suggested, and thereby changing the sequence of
blocked jobs as well as random jobs in groups, thus reducing the energy
consumption of blocking and machine idle. 5) The SA acceptance cri-
teria update the current solution based on the Temperature parameter,
which is aimed at increasing the diversity of solutions. To some extent,
it avoids the solution from falling into local optima. Since SA is not the
innovation of this paper, the approach will not be described in detail
in subsequent sections. For more details, please see [63].

4.1. NEH_Fam method

The ordering of groups directly affects the idle energy consump-
tion of the scheduling sequence and the energy consumption of the
machine settings. Moreover, a reduction in the setup time of families
can potentially lead to a decrease in the objective value for the whole
scheduling sequence [26]. NEH heuristic algorithms are widely used
because of their high efficiency and simplicity of ideas. It is often
used for initialization of meta-heuristic algorithms [64]. In [58], The
NEH_Fam heuristic algorithm reduces the machine idle and machine
setup time by changing the scheduling ordering between different
groups and thus reducing the machine idle and machine setup time.
In addition, it effectively avoids the problem of violating the constraint
that jobs between different groups cannot cross over. Therefore, this
initialization strategy is adopted in this paper to generate a high-quality
solution. Algorithm3 gives the detailed steps.

Algorithm 3 NEH_Fam method
Input:

(

𝜋𝑜𝑟𝑖𝑔𝑖𝑛, 𝜏𝑜𝑟𝑖𝑔𝑖𝑛
)

, 𝜋𝑠𝑢𝑏 = {}
Output:

(

𝜋𝑁 , 𝜏𝑁
)

1: 𝑃𝑙 ←
∑𝑆

𝑠=1
∑𝑛𝑙

𝑗=1 𝑝𝑗,𝑠,𝑙 , 𝑙 = 1, ..., 𝐹
2: Sort family sequence

{

𝜋𝑜𝑟𝑖𝑔𝑖𝑛
1 , ..., 𝜋𝑜𝑟𝑖𝑔𝑖𝑛

𝑙 , ..., 𝜋𝑜𝑟𝑖𝑔𝑖𝑛
𝐹

}

based on the descending
𝑃𝑙, 𝜋𝛥 is obtained.

3: for 𝑙 = 1 𝐭𝐨 𝐹 do
4: for 𝑖 = 1 𝐭𝐨 |

|

𝜋𝑠𝑢𝑏
|

|

+ 1 do
5: Retrieve family 𝜋𝑜𝑟𝑖𝑔𝑖𝑛

𝑙 from 𝜋𝛥, and put it in the 𝑖𝑡ℎ position of 𝜋𝑠𝑢𝑏.
A new 𝜋𝑠𝑢𝑏

𝑖 is obtained
6: end for
7:

(

𝜋𝑠𝑢𝑏, 𝜏𝑠𝑢𝑏
)

← 𝑎𝑟𝑔min|𝜋
𝑠𝑢𝑏
|
+1

𝑖=1 𝐷𝑅
(

𝜋𝑠𝑢𝑏
𝑖 , 𝜏𝑠𝑢𝑏𝑖

)

8: end for
9:

(

𝜋𝑁 , 𝜏𝑁
)

←
(

𝜋𝑠𝑢𝑏, 𝜏𝑠𝑢𝑏
)

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin

i

o
←

f

f

4

m
t
m
g
t
b
o

In Algorithm 3, 𝑝𝑗,𝑠,𝑙 denotes that the processing time of j belongs
to the family l at stage s. In Lines 1–2, calculate the total processing
time at all stages for all jobs belonging to the same group, arranging
the families in descending order. In Lines 3–8, we retrieve the families
one by one in the descending order and insert them into all positions
of the remaining family sequence. For each retrieved family, the job
sequence that results in the minimum energy consumption after all
possible insertion positions have been considered will be saved. As
in line 7, the energy consumption value is computed by using the
decoding rule DR and finding the minimum energy consumption value
for all current job sequences. In Line 9, we get a complete scheduling
sequence.

4.2. Group-based neighborhood search strategy

In the scheduling process of the BHFGSP, the processing time for
different jobs are pre-determined and immutable. The selection of
machines is automatically determined by the decoding rule. Conse-
quently, the main focus is on mitigating the impact of the setup time
of machines and the order of group sequence. To achieve this, we have
developed a group-based neighborhood search strategy that adjust the
group sorting to diminish the setup time of machines, thereby further
minimizing the total energy consumption. Moreover, all strategies are
constructed around swap operators, which simplifies the process and
reduces computational time complexity [65].

As shown in Algorithm 4, two group-based swap operators are
employed to adjust the group sequence. Within the framework of
the SIVNS algorithm, the incorporation of group-based neighborhood
search strategy efficiently improves the order of group sorting. These
operators are instrumental in broadening the search space and im-
proving the solution quality. Specifically, the proposed strategy intro-
duces two group-based swap operators tailored to reduce the energy
consumption of machine setup time.

Algorithm 4 Group-based neighborhood search strategy
Input:

(

𝜋𝑁 , 𝜏𝑁
)

Output:
(

𝜋𝐺 , 𝜏𝐺
)

1: 𝑟𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑖 (1, 2) ⊳ A random integer in [1, 2]
2: if 𝑟𝑛𝑑 = 1 then
3:

(

𝜋𝐺 , 𝜏𝐺
)

← Group-random_operator (
(

𝜋𝑁 , 𝜏𝑁
)

)
4: else
5:

(

𝜋𝐺 , 𝜏𝐺
)

← Group-perturb_operator (
(

𝜋𝑁 , 𝜏𝑁
)

)
6: end if

The details of the Group-random_operator () is shown as follows:
Step1: Randomly choose two families, denoted as 𝜋𝑟𝑎𝑛𝑑

𝑎 , 𝜋𝑟𝑎𝑛𝑑
𝑏 , from

the set 𝜋𝑁 and swap their positions. Then, a new sequence
(

𝜋𝑟𝑎𝑛𝑑 , 𝜏𝑟𝑎𝑛𝑑
)

s obtained.
Step2: If the dispatching performance 𝐷𝑅

(

𝜋𝑟𝑎𝑛𝑑 , 𝜏𝑟𝑎𝑛𝑑
)

is less than
r equal to the initial dispatching performance 𝐷𝑅

(

𝜋𝑁 , 𝜏𝑁
)

,
(

𝜋𝑁 , 𝜏𝑁
)

(

𝜋𝑟𝑎𝑛𝑑 , 𝜏𝑟𝑎𝑛𝑑
)

; Otherwise,
(

𝜋𝑟𝑎𝑛𝑑 , 𝜏𝑟𝑎𝑛𝑑
)

←
(

𝜋𝑁 , 𝜏𝑁
)

.
Step3: Repeat steps 1 and 2 for a total of 𝑅 iterations. After the

inal iteration,
(

𝜋𝐺 , 𝜏𝐺
)

←
(

𝜋𝑟𝑎𝑛𝑑 , 𝜏𝑟𝑎𝑛𝑑
)

.
The details of the Group-perturb_operator () is shown as follows:
Step1: Set the counter 𝑐𝑜𝑢𝑛𝑡 ← 1 and 𝑐𝑜𝑢𝑛𝑡2 ← 𝑐𝑜𝑢𝑛𝑡 + 1.
Step2: While 𝑐𝑜𝑢𝑛𝑡2 is less than or equal to the total number of

amilies 𝐹 , perform a swap between the positions of 𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏
𝑐𝑜𝑢𝑛𝑡 and 𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏

𝑐𝑜𝑢𝑛𝑡2 .
Step3: If the new dispatching performance 𝐷𝑅

(

𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏, 𝜏𝑝𝑒𝑟𝑡𝑢𝑟𝑏
)

is
less than or equal to the current dispatching performance 𝐷𝑅

(

𝜋𝑁 , 𝜏𝑁
)

,
(

𝜋𝑁 , 𝜏𝑁
)

←
(

𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏, 𝜏𝑝𝑒𝑟𝑡𝑢𝑟𝑏
)

; Otherwise,
(

𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏, 𝜏𝑝𝑒𝑟𝑡𝑢𝑟𝑏
)

←
(

𝜋𝑁 , 𝜏𝑁
)

.
Step4: Continue swapping the positions of 𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏

𝑐𝑜𝑢𝑛𝑡 and 𝜋𝑝𝑒𝑟𝑡𝑢𝑟𝑏
𝑐𝑜𝑢𝑛𝑡2 until

𝑐𝑜𝑢𝑛𝑡2 reaches 𝐹 .
Step5: Once 𝑐𝑜𝑢𝑛𝑡2 has reached 𝐹 , 𝑐𝑜𝑢𝑛𝑡++ and 𝑐𝑜𝑢𝑛𝑡2 ← 𝑐𝑜𝑢𝑛𝑡+1.
Step6: Continue the operations described above until 𝑐𝑜𝑢𝑛𝑡 equals

(𝐺 𝐺) (𝑝𝑒𝑟𝑡𝑢𝑟𝑏 𝑝𝑒𝑟𝑡𝑢𝑟𝑏)
6

𝐹 − 1. At this point, 𝜋 , 𝜏 ← 𝜋 , 𝜏 .
.3. Job-based neighborhood search strategy

Due to the absence of buffers, jobs may be blocked on the current
achine. The blocking constraint prevents the completion of the en-

ire process and increases the ineffective energy consumption of the
achine. Therefore, after adjusting the arrangement order between

roups, it is necessary to further perform job adjustment to minimize
he impact of blocking on energy consumption. In this subsection, a job-
ased neighborhood search strategy is proposed to improve the quality
f the solution.

Algorithm 5 Job-based neighborhood search strategy
Input:

(

𝜋𝐺 , 𝜏𝐺
)

Output:
(

𝜋𝐽 , 𝜏𝐽
)

1: 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗 ←
∑𝑆

𝑠=1
(

𝑑𝑗,𝑠 − 𝑐𝑗,𝑠
)

, 𝑗 = {1, 2, ..., 𝑁} ⊳ Store the blocking time of all jobs at
each stage

2: Sort {𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔_1, ..., 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔_𝑗, ..., 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔_𝑁} according to the descending sequence.
3: for 𝑗 = 1 𝐭𝐨 𝑁 do
4: if |𝐽𝑜𝑏𝐼𝑛𝐹𝑎𝑚

[

𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗
]

| = 1 then ⊳ this group that has only one job
5: (

𝜋𝐽 , 𝜏𝐽
)

← Single-job_operator (
(

𝜋𝐺 , 𝜏𝐺
)

, 𝐽𝑜𝑏𝐼𝑛𝐹𝑎𝑚
[

𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗
]

)
6: else
7: 𝑟𝑛𝑑 ← 𝑟𝑎𝑛𝑑𝑖 (1, 2) ⊳ a random integer in [1, 2]
8: if 𝑟𝑛𝑑 = 1 then
9: (

𝜋𝐽 , 𝜏𝐽
)

← BlockingJob-random_operator(
(

𝜋𝐺 , 𝜏𝐺
)

, 𝐽𝑜𝑏𝐼𝑛𝐹𝑎𝑚
[

𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗
]

)
10: else
11: (

𝜋𝐽 , 𝜏𝐽
)

← Job-random_operator(
(

𝜋𝐺 , 𝜏𝐺
)

)
12: end if
13: end if
14: end for

As shown in Algorithm 5, in the proposed strategy, we first calculate
the total blocking time of all jobs in all stages (Line 1). Then, the
sequence containing the job indexes is sorted in descending order based
on the blocking time of all jobs, 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔_𝑗 indicates the job that in
position 𝑗 of sequence 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔. 𝐽𝑜𝑏𝐼𝑛𝐹𝑎𝑚 [𝑗] stores the sort order
number of jobs (Line 2). If a job has a blocking time of zero, it is posi-
tioned in the sequence subsequent to the jobs that cause blocking. This
method ensures that the job with the longest blocking time is given the
highest adjusted priority. In cases where a group comprises a single job,
the operation on that job is redefined as a group operation. Specifically,
a Single-job_operator is executed to rearrange the job order (Line 5).
Additionally, operations such as BlockingJob-random_operator (Line
9) and Job-random_operator (Line 11) are also applied to jobs within
the same sequence. Similar to the group-based neighborhood search
strategy, the strategy for addressing blocking jobs and all these jobs
is based on swap operations. These operations are highly effective in
reducing energy consumption caused by machine blocking and idling.
Furthermore, they compensate for the SIVNS algorithm’s limitations in
search ability.

The details of the Single-job_operator is shown as follows:
Step1: Identify the family 𝐽𝑜𝑏𝐼𝑛𝐹𝑎𝑚

[

𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗
]

containing the
blocking job, denoted as 𝜋𝐺

𝑠𝑒𝑙𝑒𝑐𝑡. Perform an initial swap of 𝜋𝐺
𝑠𝑒𝑙𝑒𝑐𝑡 with

all other families.
Step2: Determine the family sequence with the minimum energy

consumption, designated as 𝜋𝑖𝑛𝑡𝑒𝑟.
Step3: If the dispatching performance 𝐷𝑅

(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

is less than
or equal to the initial group’s dispatching performance 𝐷𝑅

(

𝜋𝐽 , 𝜏𝐽
)

,
(

𝜋𝐽 , 𝜏𝐽
)

←
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

; Otherwise,
(

𝜋𝐽 , 𝜏𝐽
)

←
(

𝜋𝐺 , 𝜏𝐺
)

.
The details of the BlockingJob-random_operator is shown as fol-

lows:
Step1: Set the counter 𝑐𝑜𝑢𝑛𝑡 = 1 and identify the job 𝜏𝐺𝑠𝑒𝑙𝑒𝑐𝑡 =

𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗 within its family 𝐽𝑜𝑏𝐼𝑛𝐹𝑎𝑚
[

𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑗
]

, with position 𝑃𝑜𝑠 =
𝑆𝑒𝑙𝑒𝑐𝑡. Initialize the current sequences as

(

𝜋𝐽 , 𝜏𝐽
)

←
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

←
(

𝜋𝐺 , 𝜏𝐺
)

.
Step2: While the counter is less than or equal to a constant 𝐶,

randomly select a job 𝜏 𝑖𝑛𝑡𝑒𝑟𝑟𝑎𝑛𝑑𝑜𝑚 from the same family as 𝜏 𝑖𝑛𝑡𝑒𝑟𝑃 𝑜𝑠 , ensuring
𝜏 𝑖𝑛𝑡𝑒𝑟𝑟𝑎𝑛𝑑𝑜𝑚! = 𝜏 𝑖𝑛𝑡𝑒𝑟𝑃 𝑜𝑠 .

Step3: Swap the positions of 𝜏 𝑖𝑛𝑡𝑒𝑟𝑟𝑎𝑛𝑑𝑜𝑚 with 𝜏 𝑖𝑛𝑡𝑒𝑟𝑃 𝑜𝑠 to obtain a new
sequence

(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

.

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin

t
a
(

n

Table 3
Comparative results between different variants when 𝐹=20.

Instance V-G V-J SIVNS

N × S RPD p-value RPD p-value RPD p-value

F=20

80 × 3 0.733 1.563E−12 2.921 1.202E−61 0.366 \
80 × 5 0.387 3.761E−12 2.235 8.994E−70 0.156 \
80 × 8 1.218 4.778E−38 3.428 9.022E−85 0.146 \
100 × 3 0.424 1.484E−34 2.031 1.897E−84 0.049 \
100 × 5 0.615 2.760E−17 3.758 4.275E−71 0.088 \
100 × 8 1.034 1.165E−24 3.851 1.352E−66 0.143 \
120 × 3 0.365 1.023E−09 2.744 1.076E−66 0.121 \
120 × 5 0.566 1.031E−05 3.983 2.956E−59 0.229 \
120 × 8 1.299 1.500E−18 3.923 1.834E−53 0.395 \
140 × 3 0.259 1.481E−04 2.794 4.427E−69 0.123 \
140 × 5 0.645 7.035E−08 3.635 2.878E−56 0.253 \
140 × 8 0.517 1.402E−02 3.686 1.443E−53 0.329 \
160 × 3 0.343 2.502E−03 4.462 2.441E−68 0.174 \
160 × 5 0.683 3.273E−07 4.172 6.237E−59 0.258 \
160 × 8 0.327 3.397E−01 3.613 9.894E−56 0.259 \
180 × 3 0.411 3.471E−04 4.498 8.136E−66 0.189 \
180 × 5 0.434 2.169E−02 4.551 1.567E−60 0.259 \
180 × 8 0.619 1.926E−04 3.805 1.518E−54 0.319 \
200 × 3 0.563 1.465E−04 5.913 4.672E−68 0.242 \
200 × 5 0.417 2.434E−01 5.153 5.986E−59 0.313 \
200 × 8 0.384 4.355E−01 4.288 5.319E−56 0.317 \
220 × 3 0.294 1.118E−05 3.108 6.615E−68 0.120 \
220 × 5 0.479 1.712E−02 4.651 1.145E−59 0.290 \
220 × 8 0.444 6.689E−02 4.017 6.315E−55 0.295 \
240 × 3 0.545 2.696E−03 6.888 9.496E−69 0.288 \
240 × 5 0.233 6.739E−01 3.464 2.965E−59 0.207 \
240 × 8 0.507 1.797E−01 5.052 2.317E−55 0.370 \
260 × 3 0.463 8.472E−03 5.976 2.401E−67 0.247 \
260 × 5 0.499 1.203E−01 5.633 1.307E−59 0.347 \
260 × 8 0.721 7.313E−03 5.179 6.416E−54 0.408 \
280 × 3 0.358 9.103E−02 5.336 1.532E−68 0.243 \
280 × 5 0.436 2.565E−01 5.163 9.717E−58 0.333 \
280 × 8 0.476 2.105E−01 4.647 3.126E−55 0.361 \
300 × 3 0.312 5.210E−03 4.491 3.321E−70 0.166 \
300 × 5 0.648 1.629E−02 5.974 3.659E−59 0.388 \
300 × 8 0.513 1.162E−01 4.724 1.471E−55 0.366 \

Step4: If the new dispatching performance 𝐷𝑅
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

is less
han or equal to the current best 𝐷𝑅

(

𝜋𝐽 , 𝜏𝐽
)

,
(

𝜋𝐽 , 𝜏𝐽
)

←
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

nd set 𝑃𝑜𝑠 to a new random position; Otherwise,
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

←
𝜋𝐽 , 𝜏𝐽

)

and increment the counter.
Step5: Repeat steps 2 to 4 until the counter exceeds 𝐶. 𝐶 is the

umber of jobs in the current family.
The details of the Job-random_operator is shown as follows:
Step1: Set the counter 𝑐𝑜𝑢𝑛𝑡 = 1,

(

𝜋𝐽 , 𝜏𝐽
)

←
(

𝜋𝐺 , 𝜏𝐺
)

.
Step2: Randomly select a job, denoted as 𝜋𝐺

𝑠𝑒𝑙𝑒𝑐𝑡. In addition, choose
another random job 𝜋𝐺

𝑠𝑒𝑙𝑒𝑐𝑡2 that is different from Job 𝜋𝐺
𝑠𝑒𝑙𝑒𝑐𝑡.

Step3: Swap the positions of 𝜋𝐺
𝑠𝑒𝑙𝑒𝑐𝑡 with 𝜋𝐺

𝑠𝑒𝑙𝑒𝑐𝑡2. A new sequence
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

is obtained.
Step4: If the new dispatching performance 𝐷𝑅

(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

is less
than or equal to the current best 𝐷𝑅

(

𝜋𝐺 , 𝜏𝐺
)

,
(

𝜋𝐽 , 𝜏𝐽
)

←
(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

;
Otherwise,

(

𝜋𝑖𝑛𝑡𝑒𝑟, 𝜏𝑖𝑛𝑡𝑒𝑟
)

←
(

𝜋𝐽 , 𝜏𝐽
)

and increment the counter.
Step5: Repeat steps 2 to 4 until the counter exceeds 𝐶. 𝐶 is the

number of jobs in the current family.

5. Experiments and analysis

5.1. Simulation environment settings and evaluating metric

To evaluate the performance of SIVNS algorithm in addressing the
energy-efficient BHFGSP, we have utilized a series of test instances.
See [58,66,67], we set the same running time (𝜌 × 𝐹 × 𝑆 milliseconds)
for all comparison algorithms to serve as the algorithm termination
criterion. we have considered the following parameters: 𝐹 = {20, 40, 60}
for the number of families, 𝑁 = {80, 100, 120, 140, 160, 180, 200, 220,
240, 260, 280, 300} for the number of jobs, and 𝑆 = {3, 5, 8} for the
7

number of stages. This results in a comprehensive set of 108 different
Table 4
Comparative results between different variants when 𝐹=40.

Instance V-G V-J SIVNS

N × S RPD p-value RPD p-value RPD p-value

F=40

80 × 3 0.566 8.702E−26 1.811 1.944E−65 0.132 \
80 × 5 1.061 9.596E−36 2.768 3.267E−70 0.182 \
80 × 8 1.033 1.272E−57 3.443 1.605E−107 0.040 \
100 × 3 0.485 2.614E−17 2.406 1.135E−65 0.128 \
100 × 5 0.930 1.172E−17 3.133 1.719E−67 0.118 \
100 × 8 2.259 1.837E−20 3.866 4.218E−62 0.244 \
120 × 3 0.212 3.961E−02 2.341 9.334E−54 0.122 \
120 × 5 0.536 3.300E−02 3.605 3.806E−48 0.338 \
120 × 8 0.885 1.145E−06 3.119 1.760E−46 0.362 \
140 × 3 0.535 3.336E−04 3.237 3.784E−56 0.257 \
140 × 5 1.170 1.491E−06 5.006 6.388E−51 0.487 \
140 × 8 0.543 4.443E−01 4.048 1.584E−48 0.469 \
160 × 3 2.765 2.101E−29 4.124 2.265E−56 0.318 \
160 × 5 1.148 4.122E−08 4.144 8.306E−51 0.411 \
160 × 8 0.936 9.117E−06 3.193 7.288E−47 0.347 \
180 × 3 0.626 1.169E−04 4.356 4.479E−58 0.266 \
180 × 5 0.781 1.508E−03 4.705 1.878E−51 0.380 \
180 × 8 0.856 1.322E−06 3.415 1.138E−49 0.336 \
200 × 3 0.537 5.971E−02 5.360 7.478E−58 0.360 \
200 × 5 0.624 1.078E−05 3.135 4.003E−52 0.297 \
200 × 8 1.943 9.098E−16 4.751 2.038E−51 0.487 \
220 × 3 0.493 6.147E−01 4.579 5.511E−42 0.423 \
220 × 5 0.902 4.926E−08 3.443 4.365E−48 0.359 \
220 × 8 0.591 6.864E−03 3.703 5.462E−51 0.337 \
240 × 3 0.301 1.827E−01 3.348 5.412E−55 0.206 \
240 × 5 0.579 1.280E−01 4.883 2.973E−53 0.403 \
240 × 8 1.684 1.041E−11 4.435 3.388E−51 0.439 \
260 × 3 0.782 1.087E−06 4.534 6.180E−61 0.285 \
260 × 5 1.353 7.887E−08 5.408 3.340E−52 0.539 \
260 × 8 0.871 2.801E−02 5.427 4.363E−51 0.547 \
280 × 3 0.988 4.699E−05 5.562 1.255E−55 0.397 \
280 × 5 0.882 1.249E−03 5.530 2.966E−54 0.455 \
280 × 8 0.861 2.611E−03 4.574 8.117E−50 0.487 \
300 × 3 0.630 7.398E−06 4.276 2.936E−58 0.251 \
300 × 5 0.578 1.178E−02 3.499 9.619E−49 0.309 \
300 × 8 0.922 1.737E−03 5.158 2.772E−51 0.497 \

combinations. For each instance, processing time 𝑝𝑗,𝑠 and setup time
𝑠𝑒𝑡𝑠,𝑓1 ,𝑓2 are randomly sampled from a uniform distribution in the
ranges [50, 99] and [10, 20], respectively. All algorithms are conducted
on a 64-bit Windows 11 operating system, using an Intel Core i7-
13790F processor running at 2.10 GHz with 16.0 GB of RAM. The
algorithms are implemented in the C++ programming language within
the Visual Studio. The box plots of all the algorithms were drawn
by origin software, while the evolutionary curve plots were drawn by
matlab.

Following the approach of [58,68], we have set the termination
criterion based on the maximum elapsed running time, calculated as
(𝜌×F×S) milliseconds. The parameter 𝜌 is set to 5. If an algorithm’s
running time reaches the termination condition, the process is halted.
Otherwise, the algorithm proceeds to the next iteration. It should be
noted that in some large-scale instances, the running time may slightly
exceed the set termination time, which is considered normal. For all
algorithms, we used a metric of Relative Percentage Increment (RPD)
to evaluate the overall performance of the algorithm. It measures the
deviation of individual results from the mean and is widely used in
much of numerous studies [69,70]. The equation is listed below:

𝑅𝑃𝐷 =
(

𝑐𝑎 − 𝑐𝑏𝑒𝑠𝑡
)

∕𝑐𝑏𝑒𝑠𝑡 × 100 (18)

where 𝑐𝑎 represents the total energy consumption obtained from al-
gorithm 𝑎, and 𝑐𝑏𝑒𝑠𝑡 is the minimum total energy consumption ob-
tained from all these algorithms. A lower 𝑅𝑃𝐷 value denotes better
performance.

5.2. Evaluation of the SIVNS strategies

In this subsection, we delve into the performance of group-based

and job-based neighborhood search strategies. As depicted in Tables 3,

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
Fig. 2. The box plots of different variants.
4 and 5, the SIVNS algorithm encompasses the aforementioned dual
neighborhood search strategies in 20, 40, and 60 groups of instances.
A variant of the SIVNS that excludes the group-based neighborhood
search strategy is designated as v-G. Similarly, a variant that excludes
the job-based neighborhood search strategy is labeled as v-J. Each in-
stance was subjected to 30 independent experimental runs with SIVNS,
and the RPD is determined as the mean of these 30 trials.

Furthermore, we conducted Wilcoxon Test statistical analyses to
ascertain whether there is a significant difference between the variants
and SIVNS for each instance. In Tables 3, 4 and 5, should the p-value
between any two algorithms be less than the 0.05 significance thresh-
old, the null hypothesis is rejected, signifying a statistically significant
difference between the compared algorithms. If not, the null hypothesis
stands, suggesting that the difference between the algorithms is either
negligible or nonexistent. Additionally, we have highlighted the best
RPD values with a significant p-value in bold to emphasize these
notable outcomes.

Examination of Tables 3, 4 and 5, reveals that neither v-G nor v-J
achieved the optimal value in terms of RPD, whereas the SIVNS algo-
rithm consistently obtained the best RPD values across all instances.
Based on the p-value analysis, v-G showed significant differences from
the SIVNS algorithm in 86 out of 108 instances. For v-J, the difference
was significant in all 108 instances. This indicates that both search
strategies significantly contribute to the enhancement of the algorithm’s
performance. To a certain extent, the group-based neighborhood search
strategy reduces the setup time on machines between different groups,
leading to a more rational and efficient group scheduling sequence.
Notably, experimental comparisons indicate that the neighborhood
search strategy tailored for addressing blocking and random jobs exerts
a more pronounced influence on algorithm performance. This strategy
significantly bolsters the algorithm’s search ability, preventing it from
becoming trapped in local optima and substantially reducing the energy
consumption associated with machine blocking and idleness.

In addition, in order to visualize the variability of the solutions
obtained between the different variants more intuitively, we draw the
RPD box plots of the two variants with SIVNS at three different group
sizes. As shown in Fig. 2, the solutions obtained by SIVNS are the most
stable and both work better than v-G and v-J.

5.3. Effectiveness of the SIVNS algorithm

To the best of our knowledge, the NIG algorithm is the only one
that addresses the BHFGSP [58]. Consequently, we have selected the
NIG algorithm as one of the comparative algorithms in this study.
Additionally, we have included classical single-individual metaheuristic
algorithms for comparison: the IGA [71]) and the double level mutation
iterated greedy algorithm (IGDLM) [45]. Both the IGA and IGDLM have
been applied to solve the HFSP and the BHFSP, respectively, which
are analogous to the problem examined in this paper. Furthermore, we
8

Table 5
Comparative results between different variants when 𝐹=60.

Instance V-G V-J SIVNS

N × S RPD p-value RPD p-value RPD p-value

F=60

80 × 3 0.063 2.725E−01 2.707 2.858E−92 0.080 \
80 × 5 0.264 1.014E−24 3.058 5.210E−91 0.050 \
80 × 8 1.480 5.554E−48 2.775 2.912E−77 0.069 \
100 × 3 0.255 1.261E−01 4.670 2.116E−67 0.170 \
100 × 5 1.616 4.374E−25 3.897 2.898E−59 0.234 \
100 × 8 1.340 5.053E−26 2.866 1.141E−61 0.199 \
120 × 3 0.250 9.783E−01 3.765 4.174E−50 0.248 \
120 × 5 3.117 2.791E−28 4.600 4.330E−54 0.412 \
120 × 8 1.396 2.499E−17 3.987 1.378E−50 0.350 \
140 × 3 0.367 5.215E−01 3.827 1.486E−53 0.312 \
140 × 5 3.015 1.477E−18 4.194 5.055E−43 0.588 \
140 × 8 1.933 1.951E−18 3.566 5.515E−46 0.402 \
160 × 3 0.636 2.395E−03 4.166 2.603E−53 0.320 \
160 × 5 0.946 1.050E−02 5.209 1.212E−47 0.550 \
160 × 8 1.588 4.525E−12 3.390 3.924E−45 0.406 \
180 × 3 0.853 3.749E−03 5.466 9.520E−52 0.486 \
180 × 5 2.010 2.801E−14 3.385 4.440E−42 0.489 \
180 × 8 1.306 2.190E−16 2.843 2.134E−46 0.308 \
200 × 3 1.947 2.351E−14 5.339 6.532E−52 0.496 \
200 × 5 0.722 1.413E−02 3.902 7.668E−47 0.435 \
200 × 8 1.451 1.546E−12 3.923 1.952E−46 0.428 \
220 × 3 0.727 2.315E−02 5.402 6.024E−54 0.410 \
220 × 5 1.919 4.933E−12 4.285 3.703E−47 0.440 \
220 × 8 1.228 5.612E−15 3.038 4.244E−49 0.317 \
240 × 3 0.539 7.888E−03 3.539 4.765E−53 0.285 \
240 × 5 0.786 1.043E−04 3.777 1.097E−50 0.338 \
240 × 8 1.552 1.409E−15 3.110 8.796E−43 0.429 \
260 × 3 0.721 1.289E−02 4.691 6.839E−55 0.367 \
260 × 5 2.849 5.560E−18 4.331 7.078E−52 0.408 \
260 × 8 4.324 6.345E−20 4.706 3.191E−47 0.614 \
280 × 3 0.361 5.970E−01 3.608 1.841E−45 0.309 \
280 × 5 0.389 6.922E−01 4.024 1.511E−52 0.353 \
280 × 8 2.047 2.204E−07 4.603 2.115E−43 0.606 \
300 × 3 0.318 5.902E−01 3.681 1.218E−53 0.274 \
300 × 5 1.207 1.306E−04 5.729 6.318E−50 0.620 \
300 × 8 1.874 2.189E−14 3.997 4.947E−43 0.615 \

have employed the SA and GA [72] as a classical swarm intelligence
algorithm for comparison. To ensure the experiments are conducted
fairly, all algorithms have been implemented following the methods
outlined in their original research, with parameter settings aligned
with the primary sources. We incorporate the group-based neighborhood
search strategy proposed in this paper into their framework for per-
turbing the group ordering (which is executed before perturbing the
job sequences). Moreover, uniform encoding and decoding methods
are utilized across all algorithms, and the termination condition is uni-
formly set to the same running time to maintain consistency. Tables 6,
7 and 8 list the average RPD values obtained in 30 independent runs
for the different algorithms when the number of groups is 20,40, and

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
Table 6
The results of all comparison algorithms when F=20. Bold font represents the best RPD or values with significant differences.

Instance IGA[2020] SA[2019] GA[2019] IGDLM[2021] NIG[2022] SIVNS

N × S RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value

F=20

80 × 3 3.861 1.375E−62 5.424 1.480E−50 3.871 2.045E−63 3.458 1.455E−63 0.370 5.891E−05 0.538 \
80 × 5 2.700 3.265E−71 3.354 3.484E−62 2.727 2.034E−71 2.480 4.541E−71 0.192 8.781E−01 0.189 \
80 × 8 3.927 2.454E−83 5.433 2.759E−53 4.134 9.757E−79 3.662 3.243E−85 0.620 5.588E−24 0.193 \
100 × 3 2.206 1.684E−85 2.505 3.651E−77 2.235 2.618E−85 2.121 2.326E−84 0.189 1.543E−11 0.059 \
100 × 5 3.938 5.497E−72 4.692 4.452E−58 3.917 1.621E−71 3.832 2.525E−71 0.375 5.275E−08 0.127 \
100 × 8 4.286 2.582E−57 5.275 1.374E−55 4.181 6.896E−67 4.020 9.527E−67 0.526 7.765E−06 0.281 \
120 × 3 2.825 2.830E−67 3.013 4.503E−67 2.860 1.396E−67 2.801 4.000E−67 0.357 6.938E−08 0.130 \
120 × 5 4.177 1.800E−57 4.750 5.407E−59 4.187 3.219E−60 4.057 1.590E−59 0.638 1.579E−06 0.261 \
120 × 8 4.375 7.562E−52 4.862 7.860E−54 4.108 1.882E−54 3.989 7.982E−54 0.831 1.185E−06 0.403 \
140 × 3 2.868 1.029E−69 3.048 1.317E−69 2.859 1.409E−69 2.813 3.172E−69 0.309 3.192E−05 0.125 \
140 × 5 3.677 9.127E−57 3.981 1.937E−56 3.671 7.086E−57 3.606 1.783E−56 0.529 8.356E−06 0.197 \
140 × 8 3.892 5.928E−53 4.238 2.421E−54 3.800 3.323E−54 3.737 8.319E−54 0.726 6.291E−06 0.347 \
160 × 3 4.491 2.939E−68 4.705 6.342E−67 4.453 1.889E−68 4.440 2.240E−68 0.467 3.287E−07 0.146 \
160 × 5 4.233 1.584E−59 4.650 9.306E−60 4.213 2.581E−59 4.146 4.910E−59 0.628 2.648E−07 0.216 \
160 × 8 3.649 3.708E−56 3.821 2.632E−55 3.620 6.093E−56 3.603 8.147E−56 0.544 5.945E−05 0.238 \
180 × 3 4.569 6.425E−66 4.740 6.324E−65 4.519 6.025E−66 4.501 7.584E−66 0.501 1.187E−05 0.187 \
180 × 5 4.616 1.073E−60 4.888 2.316E−60 4.614 9.900E−61 4.591 1.324E−60 0.671 6.012E−06 0.285 \
180 × 8 3.871 8.941E−55 4.246 5.940E−55 3.870 9.273E−55 3.844 1.364E−54 0.659 5.500E−05 0.351 \
200 × 3 6.039 2.327E−68 6.484 1.617E−66 5.964 3.343E−68 5.922 4.302E−68 0.715 8.130E−08 0.241 \
200 × 5 5.153 4.260E−59 5.375 3.589E−59 5.133 4.598E−59 5.119 5.455E−59 0.790 6.643E−07 0.272 \
200 × 8 4.464 6.301E−56 4.568 4.653E−56 4.323 3.391E−56 4.300 4.555E−56 0.761 1.227E−06 0.317 \
220 × 3 3.178 3.737E−68 3.264 3.137E−68 3.124 3.614E−68 3.112 4.840E−68 0.350 2.069E−07 0.102 \
220 × 5 4.670 6.666E−60 4.853 5.323E−60 4.648 8.375E−60 4.639 9.536E−60 0.727 7.696E−07 0.264 \
220 × 8 4.025 4.234E−55 4.252 9.342E−56 4.029 4.131E−55 4.012 5.203E−55 0.670 6.923E−06 0.278 \
240 × 3 7.242 4.813E−70 7.360 2.205E−67 6.901 7.322E−69 6.888 9.655E−69 0.815 2.085E−08 0.263 \
240 × 5 3.487 2.091E−59 3.506 1.628E−59 3.475 2.571E−59 3.473 2.662E−59 0.492 1.231E−05 0.210 \
240 × 8 5.082 1.605E−55 5.416 7.531E−56 5.082 1.631E−55 5.065 1.971E−55 0.874 2.626E−06 0.367 \
260 × 3 6.105 6.123E−68 6.250 2.724E−66 5.978 2.175E−67 5.974 2.276E−67 0.685 9.606E−07 0.239 \
260 × 5 5.737 5.412E−60 5.916 3.704E−60 5.671 9.414E−60 5.652 1.128E−59 0.878 9.089E−07 0.351 \
260 × 8 5.280 3.111E−54 5.749 3.499E−55 5.197 3.698E−54 5.172 4.695E−54 0.943 6.475E−07 0.363 \
280 × 3 5.538 1.478E−69 5.658 8.374E−68 5.341 1.472E−68 5.333 2.026E−68 0.589 2.623E−06 0.235 \
280 × 5 5.211 5.516E−58 5.370 3.399E−58 5.184 7.685E−58 5.176 8.435E−58 0.793 3.305E−06 0.332 \
280 × 8 4.776 4.676E−56 4.944 6.939E−56 4.655 2.207E−55 4.646 2.494E−55 0.816 9.779E−07 0.339 \
300 × 3 4.522 2.366E−70 4.676 3.703E−70 4.519 2.565E−70 4.513 2.954E−70 0.492 1.843E−07 0.171 \
300 × 5 5.990 2.695E−59 6.338 2.890E−59 5.987 2.704E−59 5.991 2.718E−59 0.963 2.163E−07 0.365 \
300 × 8 4.791 5.045E−56 4.977 4.077E−56 4.727 1.138E−55 4.728 1.164E−55 0.814 3.341E−06 0.349 \
Table 7
The results of all comparison algorithms when F=40. Bold font represents the best RPD or values with significant differences.

Instance IGA[2020] SA[2019] GA[2019] IGDLM[2021] NIG[2022] SIVNS

N × S RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value

F=40

80 × 3 2.092 5.895E−72 2.810 7.368E−57 2.237 2.335E−71 2.048 6.790E−71 0.438 7.010E−19 0.132 \
80 × 5 3.320 2.297E−75 4.038 5.798E−59 3.289 1.696E−73 2.978 2.711E−71 0.560 7.632E−15 0.182 \
80 × 8 4.059 7.412E−69 5.485 5.141E−45 3.939 9.531E−91 3.549 4.16E−105 0.403 8.116E−45 0.040 \
100 × 3 2.644 4.594E−68 3.471 1.218E−51 2.756 9.592E−67 2.495 2.347E−66 0.377 4.171E−12 0.128 \
100 × 5 3.431 1.674E−66 4.603 6.454E−49 3.423 3.417E−68 3.195 5.884E−68 0.421 2.285E−10 0.118 \
100 × 8 6.344 4.918E−34 6.907 3.591E−36 4.367 1.404E−61 3.944 1.392E−62 0.626 1.490E−08 0.244 \
120 × 3 2.379 3.546E−54 2.494 2.910E−55 2.427 1.078E−54 2.368 4.572E−54 0.286 1.714E−04 0.122 \
120 × 5 3.721 6.381E−49 4.933 1.349E−41 3.833 1.142E−49 3.663 1.442E−48 0.585 3.696E−03 0.338 \
120 × 8 3.799 3.435E−49 5.028 8.120E−37 3.369 2.987E−48 3.166 6.778E−47 0.503 8.664E−02 0.362 \
140 × 3 3.388 2.397E−57 4.214 3.398E−42 3.357 5.214E−57 3.269 2.097E−56 0.690 1.774E−09 0.257 \
140 × 5 5.586 7.460E−50 7.798 3.523E−33 5.213 1.291E−51 5.030 4.752E−51 1.104 6.960E−07 0.487 \
140 × 8 4.284 6.198E−50 6.640 1.039E−32 4.259 2.083E−49 4.077 1.045E−48 1.200 9.862E−06 0.469 \
160 × 3 5.131 1.747E−56 6.954 5.941E−43 4.313 8.157E−57 4.151 1.646E−56 0.844 3.704E−07 0.318 \
160 × 5 4.773 1.163E−54 6.496 4.785E−38 4.283 1.649E−51 4.168 6.003E−51 0.886 1.446E−05 0.411 \
160 × 8 3.294 1.155E−47 4.237 2.697E−37 3.312 9.208E−48 3.219 4.397E−47 0.794 6.734E−07 0.347 \
180 × 3 5.764 7.828E−56 5.871 3.067E−40 4.433 1.728E−58 4.367 3.844E−58 0.870 2.314E−08 0.266 \
180 × 5 5.258 3.613E−44 6.166 2.661E−36 4.767 8.677E−52 4.723 1.519E−51 1.248 4.830E−09 0.380 \
180 × 8 3.861 4.255E−44 4.609 1.160E−37 3.517 2.200E−50 3.434 8.504E−50 0.740 5.698E−06 0.336 \
200 × 3 5.610 6.389E−58 7.112 3.461E−37 5.456 2.764E−58 5.387 5.571E−58 0.956 3.784E−07 0.360 \
200 × 5 3.304 3.433E−53 3.552 1.027E−54 3.316 1.453E−53 3.201 1.322E−52 0.686 1.471E−06 0.297 \
200 × 8 5.071 3.281E−53 7.437 3.227E−35 4.973 3.889E−52 4.845 9.860E−52 1.403 2.261E−09 0.487 \
220 × 3 4.672 1.593E−42 5.137 9.068E−41 4.641 2.405E−42 4.607 3.793E−42 0.799 1.109E−02 0.423 \
220 × 5 3.759 3.014E−50 4.008 1.129E−50 3.686 7.560E−50 3.565 6.177E−49 0.901 3.046E−08 0.359 \
220 × 8 3.874 4.127E−52 5.312 2.768E−36 3.773 2.012E−51 3.728 3.807E−51 0.883 2.282E−08 0.337 \
240 × 3 3.508 3.197E−56 3.994 1.783E−44 3.374 3.394E−55 3.369 3.908E−55 0.515 3.111E−05 0.206 \
240 × 5 5.462 3.765E−56 6.586 7.751E−38 4.946 1.655E−53 4.926 2.098E−53 0.993 3.668E−07 0.403 \
240 × 8 5.308 1.560E−55 6.982 2.195E−31 4.549 1.164E−51 4.461 2.556E−51 1.086 6.773E−07 0.439 \
260 × 3 4.872 4.835E−62 5.107 8.748E−61 4.715 8.444E−62 4.632 1.998E−61 0.815 7.146E−09 0.285 \

(continued on next page)
9

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin

b
S
S
S
r
i
F
t
f
t

t

Table 7 (continued).
Instance IGA[2020] SA[2019] GA[2019] IGDLM[2021] NIG[2022] SIVNS

N × S RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value

260 × 5 5.775 1.173E−53 7.790 1.592E−38 5.487 1.653E−52 5.476 2.494E−52 1.218 2.344E−07 0.539 \
260 × 8 5.901 3.540E−52 8.409 1.064E−36 5.598 9.596E−52 5.522 2.562E−51 1.486 7.570E−08 0.547 \
280 × 3 6.305 1.963E−59 7.026 1.431E−40 5.625 1.743E−56 5.593 2.681E−56 1.090 1.442E−07 0.397 \
280 × 5 5.751 1.941E−54 7.204 7.233E−40 5.578 1.884E−54 5.565 2.262E−54 1.097 1.548E−07 0.455 \
280 × 8 5.416 1.107E−46 7.339 5.771E−34 4.682 2.621E−50 4.651 3.951E−50 1.200 4.495E−08 0.487 \
300 × 3 4.319 1.602E−58 4.738 4.647E−54 4.292 2.360E−58 4.295 2.279E−58 0.670 8.796E−06 0.251 \
300 × 5 3.635 4.263E−48 4.163 2.232E−41 3.557 3.497E−49 3.523 6.517E−49 0.746 1.227E−05 0.309 \
300 × 8 5.515 1.177E−51 8.414 1.942E−34 5.275 7.476E−52 5.239 1.316E−51 1.431 8.914E−08 0.497 \
Table 8
The results of all comparison algorithms when F=60. Bold font represents the best RPD or values with significant differences.

Instance IGA[2020] SA[2019] GA[2019] IGDLM[2021] NIG[2022] SIVNS

N × S RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value RPD p-value

F=60

80 × 3 3.635 6.566E−93 4.476 6.989E−54 3.063 2.214E−89 2.781 8.247E−93 0.444 4.279E−42 0.038 \
80 × 5 3.375 1.174E−93 5.086 2.884E−51 3.592 8.335E−81 3.156 2.974E−91 0.282 4.857E−26 0.050 \
80 × 8 4.246 1.626E−73 5.496 1.692E−52 3.587 2.687E−73 2.971 3.008E−78 0.508 4.136E−26 0.069 \
100 × 3 5.155 3.903E−69 6.916 2.655E−48 5.011 1.539E−68 4.758 7.801E−68 0.605 1.632E−10 0.170 \
100 × 5 4.453 9.27E−48 6.127 1.279E−47 4.467 1.075E−60 3.996 6.662E−60 0.646 1.374E−09 0.234 \
100 × 8 3.086 3.517E−62 5.100 1.092E−41 3.355 3.222E−63 2.959 1.762E−62 0.512 4.917E−10 0.199 \
120 × 3 4.665 1.964E−47 5.129 1.141E−45 4.001 1.962E−51 3.833 1.696E−50 0.462 9.373E−03 0.248 \
120 × 5 5.401 2.34E−54 7.833 3.129E−42 5.196 1.337E−54 4.700 1.285E−54 1.115 2.29E−08 0.412 \
120 × 8 6.936 2.321E−65 6.337 1.099E−37 4.398 1.791E−52 4.052 5.489E−51 0.858 4.998E−07 0.350 \
140 × 3 3.955 1.906E−54 4.596 6.705E−49 3.942 2.389E−54 3.867 7.82E−54 0.729 2.46E−05 0.312 \
140 × 5 4.819 7.748E−46 7.916 3.608E−39 4.696 3.925E−45 4.271 1.657E−43 1.520 3.415E−06 0.588 \
140 × 8 4.428 6.375E−52 6.394 1.033E−45 3.942 6.779E−48 3.634 1.861E−46 1.154 2.591E−06 0.402 \
160 × 3 4.643 3.267E−56 5.724 1.003E−45 4.308 5.762E−54 4.189 1.913E−53 1.032 5.841E−09 0.320 \
160 × 5 6.895 2.823E−55 8.141 4.682E−38 5.389 2.29E−48 5.252 7.417E−48 1.279 3.908E−07 0.550 \
160 × 8 5.293 2.58E−57 6.257 2.312E−42 3.664 8.113E−47 3.432 1.808E−45 1.418 3.754E−05 0.406 \
180 × 3 7.139 6.253E−59 9.853 2.875E−45 5.754 2.188E−52 5.508 6.192E−52 1.668 4.868E−05 0.486 \
180 × 5 3.582 2.636E−43 5.064 2.716E−39 3.561 2.835E−43 3.425 2.182E−42 0.933 3.940E−04 0.489 \
180 × 8 3.161 5.034E−48 3.753 2.608E−47 2.974 1.702E−47 2.878 1.006E−46 0.765 4.509E−07 0.308 \
200 × 3 11.584 1.369E−72 9.660 4.11E−35 5.673 1.014E−52 5.442 4.394E−52 1.528 3.202E−07 0.496 \
200 × 5 4.780 2.123E−52 5.402 5.404E−40 4.011 1.739E−47 3.937 4.545E−47 1.022 1.473E−05 0.435 \
200 × 8 5.291 7.341E−40 6.489 4.658E−34 4.099 2.418E−47 3.976 1.009E−46 1.250 5.675E−07 0.428 \
220 × 3 5.789 1.03E−55 8.002 5.349E−39 5.543 2.144E−54 5.490 3.068E−54 1.096 5.471E−06 0.410 \
220 × 5 4.498 2.358E−48 6.127 3.948E−44 4.458 4.893E−48 4.363 1.428E−47 1.062 1.933E−06 0.440 \
220 × 8 3.153 4.06E−50 4.099 8.925E−45 3.099 1.265E−49 3.063 2.681E−49 0.813 6.792E−07 0.317 \
240 × 3 3.608 1.428E−53 4.519 9.737E−40 3.590 2.154E−53 3.587 2.535E−53 0.983 2.445E−08 0.285 \
240 × 5 3.882 2.026E−51 4.185 2.332E−50 3.813 6.109E−51 3.801 7.693E−51 0.929 4.663E−08 0.338 \
240 × 8 3.527 3.241E−46 4.541 9.907E−41 3.242 8.593E−44 3.161 3.383E−43 0.983 1.792E−05 0.429 \
260 × 3 7.300 1.463E−64 6.742 5.832E−45 4.801 2.004E−55 4.790 3.864E−55 0.987 3.051E−06 0.367 \
260 × 5 5.377 1.373E−54 6.905 5.772E−41 4.541 1.181E−52 4.454 2.132E−52 1.155 7.201E−07 0.408 \
260 × 8 6.357 9.508E−56 9.077 1.566E−37 5.011 2.064E−48 4.894 1.057E−47 1.723 3.07E−05 0.614 \
280 × 3 3.774 1.296E−46 3.846 1.435E−46 3.635 1.165E−45 3.628 1.323E−45 0.794 9.616E−05 0.309 \
280 × 5 4.060 8.485E−53 4.699 9.893E−51 4.044 1.103E−52 4.057 9.961E−53 0.917 8.259E−07 0.353 \
280 × 8 4.865 7.889E−45 7.224 1.503E−36 4.782 2.413E−44 4.679 9.28E−44 1.272 9.265E−05 0.606 \
300 × 3 3.800 2.083E−54 4.314 4.109E−48 3.708 7.827E−54 3.716 7.125E−54 0.780 2.795E−07 0.274 \
300 × 5 6.593 5.606E−50 8.754 5.262E−39 5.984 1.107E−50 5.868 2.511E−50 1.744 2.2E−06 0.620 \
300 × 8 5.514 1.764E−49 5.652 7.902E−37 4.023 5.841E−44 4.057 1.783E−43 1.435 4.185E−05 0.615 \
60, respectively. In addition, Wilcoxon Test is conducted and all the
algorithms are compared with SIVNS.

As can be seen from Tables 6, 7, and 8, it clearly indicates that
the SIVNS achieved the best RPD values in 107 out of 108 instances,
while the NIG algorithm secured the best RPD value in just 1 out of 108
instances. In contrast, the IGA, SA, and GA did not attain the best RPD
values. Based on the p-value analysis, there is a significant difference
etween SIVNS and NIG in 106 instances. Furthermore, all results from
IVNS demonstrate significant differences when compared to the IGA,
A, and GA. These findings underscore the superior performance of
IVNS over the other algorithms under comparison. To provide a visual
epresentation of the RPD values among different algorithms across all
nstances, we have created box plots for each algorithm. As depicted in
ig. 3, each algorithm is represented by boxes of different colors, with
he proposed SIVNS exhibiting the most consistent RPD range. This
urther substantiates the significant performance difference between
he proposed algorithm and the others under comparison.

In summary, the reasons for the superior performance achieved by
10

he proposed SIVNS are attributed:
• The single-individual algorithmic framework employed by the
SIVNS effectively concentrates improvement efforts on a single
solution, thereby significantly enhancing the local search ability
of the algorithm.

• The group-based neighborhood search strategy, as introduced in
this paper, addresses the challenges associated with grouping
sorting and the high overhead of machine setup. It also effectively
reduces the energy consumption associated with machine setup
and idle times.

• The neighborhood search strategy designed to tackle job blocking
and sorting greatly enhances the comprehension of the scheduling
process and mitigates the impact of machine blocking and idling
on energy consumption.

To assess the convergence of the algorithms across various in-
stances, we randomly selected six instances of different scales:
100 × 8 × 40, 160 × 8 × 20, 200 × 8 × 20, 240 × 3 × 40, 260 × 5 × 60,
and 280 × 5 × 60. For each instance, we plotted convergence curves

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
Fig. 3. RPD values of all algorithms, shown in the form of box plots.
Fig. 4. The convergence curves of all these algorithms: (a) 100 × 8 × 40. (b) 160 × 8 × 20. (c) 200 × 8 × 20. (d) 240 × 3 × 40. (e) 260 × 5 × 60. (f) 280 × 5 × 60.
under identical termination conditions. At the commencement of each
algorithmic iteration, we recorded the current objective function value
and then tallied these values at regular time intervals. For instance, in
the 100 × 8 × 40 instance, we divided the total time into 20 equal
segments, using these segments as the units for the 𝑥-axis. The 𝑦-
axis represents the range of objective function values. As illustrated
by the six convergence plots in Fig. 4, the proposed SIVNS algorithm
demonstrates superior performance in exploring the optimal solution
compared to all other algorithms under comparison.

6. Conclusion

In this paper, we design a single-individual based variable neighbor-
hood search algorithm to minimize the energy consumption of BHFGSP.
Based on experimental and statistical analysis results, the proposed
algorithm is proved to be very effective in solving the BHFGSP. In
the proposed SIVNS, we propose a new decoding rule for BHFGSP
with energy consumption as the optimization objective. Subsequently,
11
a group-based neighborhood search strategy is designed to adjust the
scheduling arrangement order of groups to further reduce the energy
consumption of machine settings between different groups. Following
this, a blocking job and job-based neighborhood search strategy is
proposed to change the arrangement order of the job sequences to
reduce the energy consumption caused by machine blocking and idling,
and to further improve the productivity of the enterprise.

In the future, we will continue to design strategies based on the
problem characteristics of BHFGSP. Similarly, we will study more
real-world applications related to this problem. We will further con-
sider more conditions such as distribution, processing time fuzzy, time
window, and machine breakdown. In addition, some state-of-the-art
machine learning techniques, such as reinforcement learning [73], etc.,
can be considered in combination with meta-heuristic algorithms.

CRediT authorship contribution statement

Zhongyuan Peng: Writing – original draft. Haoxiang Qin: Writing
– original draft.

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
Declaration of competing interest

We declare that we have no personal relationships with other people
or organizations that can inappropriately influence our work. We de-
clare that we do not have any commercial or associative interest that
represents a conflict of interest in connection with the work submitted.

References

[1] Wang Y-J, Wang G-G, Tian F-M, Gong D-W, Pedrycz W. Solving energy-efficient
fuzzy hybrid flow-shop scheduling problem at a variable machine speed using
an extended NSGA-II. Eng Appl Artif Intell 2023;121:105977. http://dx.doi.org/
10.1016/j.engappai.2023.105977.

[2] Pan QK, Wang L, Mao K, Zhao JH, Zhang M. An effective artificial bee colony
algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE
Trans Autom Sci Eng 2013;10(2):307–22.

[3] Zheng J, Wang L, Wang JJ. A cooperative coevolution algorithm for multi-
objective fuzzy distributed hybrid flow shop. Knowl-Based Syst 2020;105536.

[4] Qin M, Wang R, Shi Z, Liu L, Shi L. A genetic programming-based scheduling
approach for hybrid flow shop with a batch processor and waiting time
constraint. IEEE Trans Autom Sci Eng 2019;PP(99):1–12.

[5] Wang Y-J, Li J, Wang G-G. Fuzzy correlation entropy-based NSGA-II
for energy-efficient hybrid flow-shop scheduling problem. Knowl-Based Syst
2023;277:110808. http://dx.doi.org/10.1016/j.knosys.2023.110808.

[6] Marichelvam MK, Prabaharan T, Yang XS. A discrete firefly algorithm for the
multi-objective hybrid flowshop scheduling problems. IEEE Press; 2014.

[7] Lei D, Gao L, Zheng Y. A novel teaching-learning-based optimization algorithm
for energy-efficient scheduling in hybrid flow shop. IEEE Trans Eng Manage
2017;1–11.

[8] Fu Y, Zhou M, Guo X, Qi L. Scheduling dual-objective stochastic hybrid flow shop
with deteriorating jobs via bi-population evolutionary algorithm. IEEE Trans Syst
Man Cybern: Syst 2020;50(12):5037–48. http://dx.doi.org/10.1109/TSMC.2019.
2907575.

[9] Wang JJ, Wang L. A bi-population cooperative memetic algorithm for dis-
tributed hybrid flow-shop scheduling. IEEE Trans Emerg Top Comput Intell
2020;PP(99):1–15.

[10] Riahi V, Newton M, Su K, Sattar A. Constraint guided accelerated search
for mixed blocking permutation flowshop scheduling. Comput Oper Res
2018;102(FEB.):102–20.

[11] Ronconi DP. A note on constructive heuristics for the flowshop problem with
blocking. Int J Prod Econ 2004;87(1):39–48.

[12] Li JQ, Pan QK, Mao K. A hybrid fruit fly optimization algorithm for the realistic
hybrid flowshop rescheduling problem in steelmaking systems. IEEE Trans Autom
Sci Eng 2016;932–49.

[13] Shao Z, Pi D, Shao W. A novel multi-objective discrete water wave optimization
for solving multi-objective blocking flow-shop scheduling problem. Knowl-Based
Syst 2019;165(FEB.1):110–31.

[14] Qin H, Wang Y, Han Y, Chen Q, Li J. Adapting a reinforcement learning
method for the distributed blocking hybrid flow shop scheduling problem. In:
2021 5th Asian conference on artificial intelligence technology. 2021, p. 751–7.
http://dx.doi.org/10.1109/ACAIT53529.2021.9731228.

[15] Aqil S, Allali K. Two efficient nature inspired meta-heuristics solving
blocking hybrid flow shop manufacturing problem. Eng Appl Artif Intell
2021;100(104196).

[16] Zhao F, Zhang H, Wang L. A Pareto-based discrete jaya algorithm for multiob-
jective carbon-efficient distributed blocking flow shop scheduling problem. IEEE
Trans Ind Inf 2023;19(8):8588–99. http://dx.doi.org/10.1109/TII.2022.3220860.

[17] Qin H-x, Han Y, Li J, Sang H, Chen Q, Meng L, et al. A quick and effective
iterated greedy algorithm for energy-efficient hybrid flow shop scheduling
problem with blocking constraint. In: 2021 11th international conference on
information science and technology. 2021, p. 325–31. http://dx.doi.org/10.
1109/ICIST52614.2021.9440648.

[18] Logendran R. Group scheduling problem: Key to flexible manufacturing systems.
Comput Ind Eng 1992;23(1):113–6.

[19] Zhao F, Zhou G, Wang L. A cooperative scatter search with reinforcement
learning mechanism for the distributed permutation flowshop scheduling prob-
lem with sequence-dependent setup times. IEEE Trans Syst Man Cybern: Syst
2023;53(8):4899–911. http://dx.doi.org/10.1109/TSMC.2023.3256484.

[20] Zhao F, Zhu B, Wang L. An estimation of distribution algorithm-based hyper-
heuristic for the distributed assembly mixed no-idle permutation flowshop
scheduling problem. IEEE Trans Syst Man Cybern: Syst 2023;53(9):5626–37.
http://dx.doi.org/10.1109/TSMC.2023.3272311.

[21] Salmasi N, Logendran R, Skandari MR. Total flow time minimization in a
flowshop sequence-dependent group scheduling problem. Comput Oper Res
2010;37(1):199–212.

[22] Schaller JE, Gupta J, Vakharia AJ. Scheduling a flowline manufacturing
cell with sequence dependent family setup times. European J Oper Res
2000;125(2):324–39.
12
[23] Wilson AD, King RE, Hodgson TJ. Scheduling non-similar groups on a flow line:
multiple group setups. Robot Comput-Integr Manuf 2004;20(6):505–1513.

[24] Wang Y, Han Y, Wang Y, Tasgetiren MF, Li J, Gao K. Intelligent optimization
under the makespan constraint: Rapid evaluation mechanisms based on the crit-
ical machine for the distributed flowshop group scheduling problem. European
J Oper Res 2023;311(3):816–32.

[25] He X, Pan Q-k, Gao L, Wang L, Suganthan PN. A greedy cooperative co-
evolution ary algorithm with problem-specific knowledge for multi-objective
flowshop group scheduling problems. IEEE Trans Evol Comput 2021;1. http:
//dx.doi.org/10.1109/TEVC.2021.3115795.

[26] Pan QK, Gao L, Wang L. An effective cooperative co-evolutionary algo-
rithm for distributed flowshop group scheduling problems. IEEE Trans Cybern
2020;PP(99):1–14.

[27] Shao W, Shao Z, Pi D. Modeling and multi-neighborhood iterated greedy
algorithm for distributed hybrid flow shop scheduling problem. Knowl-Based Syst
2020;105527.

[28] Qin H-X, Han Y-Y, Zhang B, Meng L-L, Liu Y-P, Pan Q-K, et al. An improved
iterated greedy algorithm for the energy-efficient blocking hybrid flow shop
scheduling problem. Swarm Evol Comput 2022;69:100992.

[29] Zhang B, Pan QK, Meng LL, Lu C, Mou JH, Li JQ. An automatic multi-
objective evolutionary algorithm for the hybrid flowshop scheduling problem
with consistent sublots. Knowl-Based Syst 2022;238:107819.

[30] Wang Y, Han Y, Wang Y, Pan Q-k, Wang L. Sustainable scheduling of distributed
flow shop group: A collaborative multi-objective evolutionary algorithm driven
by indicators. IEEE Trans Evol Comput 2023;1. http://dx.doi.org/10.1109/TEVC.
2023.3339558.

[31] Wang Y, Han Y, ke Pan Q, Li H, Wang Y. Redefining hybrid flow shop group
scheduling: Unveiling a novel hybrid modeling paradigm and assessing 48 MILP
and CP models. Swarm Evol Comput 2023;83:101416. http://dx.doi.org/10.
1016/j.swevo.2023.101416.

[32] Qin H-X, Han Y-Y, Liu Y-P, Li J-Q, Pan Q-K, Xue-Han. A collaborative iterative
greedy algorithm for the scheduling of distributed heterogeneous hybrid flow
shop with blocking constraints. Expert Syst Appl 2022;201:117256.

[33] Li J-q, Pan Q-k, Duan P-y. An improved artificial bee colony algorithm for solving
hybrid flexible flowshop with dynamic operation skipping. IEEE Trans Cybern
2016;46(6):1311–24. http://dx.doi.org/10.1109/TCYB.2015.2444383.

[34] Wang J-j, Wang L. A bi-population cooperative memetic algorithm for dis-
tributed hybrid flow-shop scheduling. IEEE Trans Emerg Top Comput Intell
2021;5(6):947–61. http://dx.doi.org/10.1109/TETCI.2020.3022372.

[35] Fan J, Li Y, Xie J, Zhang C, Shen W, Gao L. A hybrid evolutionary algorithm
using two solution representations for hybrid flow-shop scheduling problem.
IEEE Trans Cybern 2023;53(3):1752–64. http://dx.doi.org/10.1109/TCYB.2021.
3120875.

[36] Shao W, Shao Z, Pi D. An ant colony optimization behavior-based MOEA/D for
distributed heterogeneous hybrid flow shop scheduling problem under nonidenti-
cal time-of-use electricity tariffs. IEEE Trans Autom Sci Eng 2022;19(4):3379–94.
http://dx.doi.org/10.1109/TASE.2021.3119353.

[37] Tang L, Wang X. An improved particle swarm optimization algorithm for the
hybrid flowshop scheduling to minimize total weighted completion time in
process industry. IEEE Trans Control Syst Technol 2010;18(6):1303–14.

[38] Pan QK, Wang L, Li JQ, Duan JH. A novel discrete artificial bee colony algorithm
for the hybrid flowshop scheduling problem with makespan minimisation. Omega
2014;45(jun.):42–56.

[39] Chen F, Luo C, Gong W, Lu C. Two-stage adaptive memetic algorithm with
surprisingly popular mechanism for energy-aware distributed hybrid flow shop
scheduling problem with sequence-dependent setup time. Complex Syst Model
Simul 2024;4(1):82–108. http://dx.doi.org/10.23919/CSMS.2024.0003.

[40] Li J-Q, Chen X-L, Duan P-Y, Mou J-H. KMOEA: A knowledge-based multiobjective
algorithm for distributed hybrid flow shop in a prefabricated system. IEEE Trans
Ind Inf 2022;18(8):5318–29. http://dx.doi.org/10.1109/TII.2021.3128405.

[41] Zhang B, Pan Q-K, Gao L, Meng L-L, Li X-Y, Peng K-K. A three-stage multiobjec-
tive approach based on decomposition for an energy-efficient hybrid flow shop
scheduling problem. IEEE Trans Syst Man Cybern: Syst 2020;50(12):4984–99.
http://dx.doi.org/10.1109/TSMC.2019.2916088.

[42] Trabelsi W, Sauvey C, Sauer N. Mathematical model and lower bound for
hybrid flowshop problem with mixed blocking constraints. IFAC Proc Vol
2012;45(6):1475–80.

[43] Mollaei A, Mohammadi M, Naderi B. A bi-objective MILP model for blocking
hybrid flexible flow shop scheduling problem: Robust possibilistic program-
ming approach. Int J Manag Sci Eng Manag 2018;14:137–46, URL https://api.
semanticscholar.org/CorpusID:69511921.

[44] Leilei M. MILP models and an improved BSA for hybrid flow shop scheduling
problems with blocking. China Mech Eng 2018;29(22):2647–58.

[45] Qin HX, Han YY, Chen QD, Li JQ, Sang HY. A double level mutation iterated
greedy algorithm for blocking hybrid flow shop scheduling. Control Decis
2021;1–10. http://dx.doi.org/10.13195/j.kzyjc.2021.0607.

[46] Elmi A, Topaloglu S. A scheduling problem in blocking hybrid flow shop robotic
cells with multiple robots. Comput Oper Res 2013;40(10):2543–55.

http://dx.doi.org/10.1016/j.engappai.2023.105977
http://dx.doi.org/10.1016/j.engappai.2023.105977
http://dx.doi.org/10.1016/j.engappai.2023.105977
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb2
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb2
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb2
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb2
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb2
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb3
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb3
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb3
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb4
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb4
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb4
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb4
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb4
http://dx.doi.org/10.1016/j.knosys.2023.110808
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb6
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb6
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb6
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb7
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb7
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb7
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb7
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb7
http://dx.doi.org/10.1109/TSMC.2019.2907575
http://dx.doi.org/10.1109/TSMC.2019.2907575
http://dx.doi.org/10.1109/TSMC.2019.2907575
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb9
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb9
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb9
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb9
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb9
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb10
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb10
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb10
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb10
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb10
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb11
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb11
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb11
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb12
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb12
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb12
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb12
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb12
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb13
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb13
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb13
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb13
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb13
http://dx.doi.org/10.1109/ACAIT53529.2021.9731228
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb15
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb15
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb15
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb15
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb15
http://dx.doi.org/10.1109/TII.2022.3220860
http://dx.doi.org/10.1109/ICIST52614.2021.9440648
http://dx.doi.org/10.1109/ICIST52614.2021.9440648
http://dx.doi.org/10.1109/ICIST52614.2021.9440648
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb18
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb18
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb18
http://dx.doi.org/10.1109/TSMC.2023.3256484
http://dx.doi.org/10.1109/TSMC.2023.3272311
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb21
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb21
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb21
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb21
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb21
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb22
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb22
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb22
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb22
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb22
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb23
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb23
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb23
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb24
http://dx.doi.org/10.1109/TEVC.2021.3115795
http://dx.doi.org/10.1109/TEVC.2021.3115795
http://dx.doi.org/10.1109/TEVC.2021.3115795
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb26
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb26
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb26
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb26
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb26
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb27
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb27
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb27
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb27
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb27
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb28
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb28
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb28
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb28
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb28
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb29
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb29
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb29
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb29
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb29
http://dx.doi.org/10.1109/TEVC.2023.3339558
http://dx.doi.org/10.1109/TEVC.2023.3339558
http://dx.doi.org/10.1109/TEVC.2023.3339558
http://dx.doi.org/10.1016/j.swevo.2023.101416
http://dx.doi.org/10.1016/j.swevo.2023.101416
http://dx.doi.org/10.1016/j.swevo.2023.101416
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb32
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb32
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb32
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb32
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb32
http://dx.doi.org/10.1109/TCYB.2015.2444383
http://dx.doi.org/10.1109/TETCI.2020.3022372
http://dx.doi.org/10.1109/TCYB.2021.3120875
http://dx.doi.org/10.1109/TCYB.2021.3120875
http://dx.doi.org/10.1109/TCYB.2021.3120875
http://dx.doi.org/10.1109/TASE.2021.3119353
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb37
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb37
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb37
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb37
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb37
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb38
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb38
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb38
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb38
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb38
http://dx.doi.org/10.23919/CSMS.2024.0003
http://dx.doi.org/10.1109/TII.2021.3128405
http://dx.doi.org/10.1109/TSMC.2019.2916088
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb42
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb42
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb42
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb42
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb42
https://api.semanticscholar.org/CorpusID:69511921
https://api.semanticscholar.org/CorpusID:69511921
https://api.semanticscholar.org/CorpusID:69511921
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb44
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb44
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb44
http://dx.doi.org/10.13195/j.kzyjc.2021.0607
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb46
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb46
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb46

Egyptian Informatics Journal 27 (2024) 100509Z. Peng and H. Qin
[47] Nakkaew P, Kantanantha N, Wongthatsanekorn W. A comparison of genetic
algorithm and artificial bee colony approaches in solving blocking hybrid
flowshop scheduling problem with sequence dependent setup/changeover times.
KKU Eng J 2016;43(2).

[48] Qin H, Han Y, Chen Q, Wang L, Wang Y, Li J, et al. Energy-efficient iterative
greedy algorithm for the distributed hybrid flow shop scheduling with blocking
constraints. IEEE Trans Emerg Top Comput Intell 2023;7(5):1442–57. http://dx.
doi.org/10.1109/TETCI.2023.3271331.

[49] Missaoui A, Boujelbene Y. An effective iterated greedy algorithm for block-
ing hybrid flow shop problem with due date window. RAIRO - Oper Res
2021;55(3):1603–16.

[50] Neufeld JS, Gupta JND, Buscher U. Minimising makespan in flowshop group
scheduling with sequence-dependent family set-up times using inserted idle
times. Int J Prod Res 2015;53(6):1791–806.

[51] Neufeld JS, Gupta J, Buscher U. A comprehensive review of flowshop group
scheduling literature. Comput Oper Res 2016;70(Jun.):56–74.

[52] Lin SW, Ying KC. Makespan optimization in a no-wait flowline manufac-
turing cell with sequence-dependent family setup times. Comput Ind Eng
2019;128(FEB.):1–7.

[53] Baker K. Scheduling groups of jobs in the two-machine flow shop. Math Comput
Modelling 1990;13(3):29–36. http://dx.doi.org/10.1016/0895-7177(90)90368-
W.

[54] Ghorbanzadeh M, Ranjbar M. Energy-aware production scheduling in the flow
shop environment under sequence-dependent setup times, group scheduling and
renewable energy constraints. European J Oper Res 2023;307(2):519–37. http:
//dx.doi.org/10.1016/j.ejor.2022.09.034.

[55] Feng H, Xi L, Xiao L, Xia T, Pan E. Imperfect preventive maintenance optimiza-
tion for flexible flowshop manufacturing cells considering sequence-dependent
group scheduling. Reliab Eng Syst Saf 2018;176(aug.):218–29.

[56] Costa A, Cappadonna FA, Fichera S. A hybrid genetic algorithm for minimizing
makespan in a flow-shop sequence-dependent group scheduling problem. J Intell
Manuf 2017.

[57] Costa A, Cappadonna FV, Fichera S. Minimizing makespan in a flow shop
sequence dependent group scheduling problem with blocking constraint. Eng
Appl Artif Intell 2020;89(Mar.):103413.1–103413.15.

[58] Qin H, Han Y, Wang Y, Liu Y, Li J, Pan Q. Intelligent optimization under blocking
constraints: A novel iterated greedy algorithm for the hybrid flow shop group
scheduling problem. Knowl-Based Syst 2022;258:109962. http://dx.doi.org/10.
1016/j.knosys.2022.109962.

[59] Wang JJ, Wang L. A cooperative memetic algorithm with learning-based agent
for energy-aware distributed hybrid flow-shop scheduling. IEEE Trans Evol
Comput 2021. http://dx.doi.org/10.1109/TEVC.2021.3106168.

[60] Fernandez-Viagas V, Perez-Gonzalez P, Framinan JM. Efficiency of the solution
representations for the hybrid flow shop scheduling problem with makespan
objective. Comput Oper Res 2019;109(SEP.):77–88.
13
[61] Li R, Gong W, Wang L, Lu C, Dong C. Co-evolution with deep reinforcement
learning for energy-aware distributed heterogeneous flexible job shop scheduling.
IEEE Trans Syst Man Cybern: Syst 2024;54(1):201–11. http://dx.doi.org/10.
1109/TSMC.2023.3305541.

[62] Li R, Gong W, Wang L, Lu C, Zhuang X. Surprisingly popular-based adaptive
memetic algorithm for energy-efficient distributed flexible job shop scheduling.
IEEE Trans Cybern 2023;53(12):8013–23. http://dx.doi.org/10.1109/TCYB.2023.
3280175.

[63] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European J Oper Res
2007;177(3):2033–49.

[64] Ham JI. A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega 1983.

[65] Qin H-X, Han Y-Y, Zhang B, Meng L-L, Liu Y-P, Pan Q-K, et al. An improved
iterated greedy algorithm for the energy-efficient blocking hybrid flow shop
scheduling problem. Swarm Evol Comput 2022;69:100992.

[66] Zhang B, Pan QK, Gao L, Zhang XL, Sang HY, Li JQ. An effective modified
migrating birds optimization for hybrid flowshop scheduling problem with lot
streaming. Appl Soft Comput 2017;52:14–27.

[67] Qin H, Bai W, Xiang Y, Liu F, Han Y, Wang L. A self-adaptive collaborative
differential evolution algorithm for solving energy resource management prob-
lems in smart grids. IEEE Trans Evol Comput 2023;1. http://dx.doi.org/10.1109/
TEVC.2023.3312769.

[68] Huang J-P, Pan Q-K, Gao L. An effective iterated greedy method for the
distributed permutation flowshop scheduling problem with sequence-dependent
setup times. Swarm Evol Comput 2020;59:100742.

[69] Li Y, Li X, Gao L, Meng L. An improved artificial bee colony algorithm for
distributed heterogeneous hybrid flowshop scheduling problem with sequence-
dependent setup times. Comput Ind Eng 2020;147:106638. http://dx.doi.org/10.
1016/j.cie.2020.106638.

[70] Meng T, Pan QK. A distributed heterogeneous permutation flowshop schedul-
ing problem with lot-streaming and carryover sequence-dependent setup time.
Swarm Evol Comput 2021;60:100804.

[71] Aqil S, Allali K. Local search metaheuristic for solving hybrid flow shop problem
in slabs and beams manufacturing. Expert Syst Appl 2020;162:113716.

[72] Meng L, Zhang C, Shao X, Ren Y, Ren C. Mathematical modelling and optimisa-
tion of energy-conscious hybrid flow shop scheduling problem with unrelated
parallel machines. Int J Prod Res 2019;57(4):1119–45. http://dx.doi.org/10.
1080/00207543.2018.1501166.

[73] Zhao F, Zhuang C, Wang L, Dong C. An iterative greedy algorithm with
Q-learning mechanism for the multiobjective distributed no-idle permutation
flowshop scheduling. IEEE Trans Syst Man Cybern: Syst 2024;54(5):3207–19.
http://dx.doi.org/10.1109/TSMC.2024.3358383.

http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb47
http://dx.doi.org/10.1109/TETCI.2023.3271331
http://dx.doi.org/10.1109/TETCI.2023.3271331
http://dx.doi.org/10.1109/TETCI.2023.3271331
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb49
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb49
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb49
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb49
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb49
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb50
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb50
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb50
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb50
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb50
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb51
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb51
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb51
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb52
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb52
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb52
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb52
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb52
http://dx.doi.org/10.1016/0895-7177(90)90368-W
http://dx.doi.org/10.1016/0895-7177(90)90368-W
http://dx.doi.org/10.1016/0895-7177(90)90368-W
http://dx.doi.org/10.1016/j.ejor.2022.09.034
http://dx.doi.org/10.1016/j.ejor.2022.09.034
http://dx.doi.org/10.1016/j.ejor.2022.09.034
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb55
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb55
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb55
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb55
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb55
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb56
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb56
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb56
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb56
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb56
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb57
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb57
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb57
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb57
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb57
http://dx.doi.org/10.1016/j.knosys.2022.109962
http://dx.doi.org/10.1016/j.knosys.2022.109962
http://dx.doi.org/10.1016/j.knosys.2022.109962
http://dx.doi.org/10.1109/TEVC.2021.3106168
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb60
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb60
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb60
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb60
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb60
http://dx.doi.org/10.1109/TSMC.2023.3305541
http://dx.doi.org/10.1109/TSMC.2023.3305541
http://dx.doi.org/10.1109/TSMC.2023.3305541
http://dx.doi.org/10.1109/TCYB.2023.3280175
http://dx.doi.org/10.1109/TCYB.2023.3280175
http://dx.doi.org/10.1109/TCYB.2023.3280175
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb63
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb63
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb63
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb63
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb63
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb64
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb64
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb64
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb65
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb65
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb65
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb65
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb65
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb66
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb66
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb66
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb66
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb66
http://dx.doi.org/10.1109/TEVC.2023.3312769
http://dx.doi.org/10.1109/TEVC.2023.3312769
http://dx.doi.org/10.1109/TEVC.2023.3312769
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb68
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb68
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb68
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb68
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb68
http://dx.doi.org/10.1016/j.cie.2020.106638
http://dx.doi.org/10.1016/j.cie.2020.106638
http://dx.doi.org/10.1016/j.cie.2020.106638
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb70
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb70
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb70
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb70
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb70
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb71
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb71
http://refhub.elsevier.com/S1110-8665(24)00072-0/sb71
http://dx.doi.org/10.1080/00207543.2018.1501166
http://dx.doi.org/10.1080/00207543.2018.1501166
http://dx.doi.org/10.1080/00207543.2018.1501166
http://dx.doi.org/10.1109/TSMC.2024.3358383

	A single-individual based variable neighborhood search algorithm for the blocking hybrid flow shop group scheduling problem
	Introduction
	Literature review
	Problem Statement
	Problem Formulation
	Encoding and decoding procedure
	An example of BHFGSP

	Proposed algorithm
	NEH_Fam method
	Group-based neighborhood search strategy
	Job-based neighborhood search strategy

	Experiments and analysis
	Simulation environment settings and evaluating metric
	Evaluation of the SIVNS Strategies
	Effectiveness of the SIVNS Algorithm

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

