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Abstract—With the continuous emission of energy in the past
years, the environmental problems are becoming more and more
serious. For example, in manufacturing, the energy efficient
scheduling problem has become particularly prominent, and
attracted much attention of the researchers. As a common
scheduling problem in the real world, the research on distributed
blocking hybrid flow shop (DBHFSP) is very few. In this paper,
we will carry out a study of the problem. Because of its NP-hard
character, therefore, we use the intelligent optimization algorithm
to solve the problem. we firstly introduce the MILP model of the
DBHFSP, then, the Q-learning method combined with the IG
algorithm framework (IGQ) is proposed to solve this problem.
In the experimental part, through the experiment results and
comparison with other algorithms in the recent literatures, the
proposed algorithm shows the excellent performance in the
simulation experiment with the objective of minimizing the
energy consumption.

Index Terms—DBHFSP, Q-learning method, IG algorithm,
energy-efficient

I. INTRODUCTION

The hybrid flow shop scheduling problem (HFSP), as an
extent of the traditional flow shop scheduling problem (FSP),
has been researched by many people [1]. In HFSP, there are
a set of stages in the processing plant, in the plant, it has a
number of unrelated parallel machines, a series of jobs must
pass all the stages. In recent years, due to the applicability
of HFSP, many people have obtained many positive result on
HFSP.

With the development of economic globalization, the pro-
duction mechanism of a single factory is difficult to meet the
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needs of the current market, therefore, in order to improve
the production efficiency of enterprises to meet the needs
of the market quickly. Most enterprises adopt the multi-
factory production mechanism, that is, the distributed flow
shop scheduling problem (DPFSP) [2]. Compared with the
traditional FSP, DPFSP can allocate resources more efficiently
and improve the production efficiency of enterprises. However,
it is more complex than FSP because it also involves the
allocation of jobs.

In DPFSP, for the single factory with parallel machines
scheduling in each plant has attracted the attention of scholars
in recent years [3]. In any processing factory, each factory
contains the same steps of processing stage. For different
processing stages, it is often assumed that there are infinite
buffers between adjacent machines, and the job can be stored
in these buffers until it is processed by the next stage machine.
However, in the actual production of the enterprise, due to
the limited storage space, there is no buffer between adjacent
machines to store the jobs, so the blocking condition [4] of
jobs in different machines should be considered. At this time,
the problem becomes distributed blocking hybrid flow shop
scheduling problem (DBHFSP). As far as the author knows,
there is no corresponding research solving the DBHFSP, but
the above situation is very common in real world, thus, it is
necessary to study the problem.

Iterative Greedy (IG) algorithm is an intelligent optimization
algorithm which contains a simple structure. Different from
other intelligence algorithms, it only yields one solution in
every iteration. IG was first used by Rubén to solve the
FSP [5], in this paper, a new IG algorithm which contains
a reinforcement learning (RL) method is developed to reduce
the energy of DBHFSP.
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Q-learning algorithm, is a basic method of RL, it has been
applied to solve FSP [6]. It shows the cumulative reward of
taking an action in some states by learning from the environ-
ment The core of the Q-learning algorithm is a simple iterative
updating of values. Each state-action (s, a) has a related Q-
value. In this paper, Q-learning mechanism is embedded into
the IG algorithm as a selection strategy, namely IG-Q-learning
(IGQ) algorithm.

The main contributions are given as follows:
(1)It is a simple, easy to implement and reduce the compu-

tational complexity of the original IG algorithm.
(2)The Q-learning method can balance the global search and

local search ability of IGQ, and effectively reduce the energy
consumption caused by blocking.

(3)Global and local search strategies effectively increase the
diversity and convergence of IGQ, and find the near-optimal
possible job sequence.

II. DISTRIBUTED BLOCKING HYBRID FLOW SHOP
SCHEDULING PROBLEM

The DBHFSP consists of some identical factories, each
factory includes the same processing stages. Each stage has
two parallel machines. A series of jobs should be processed
on one of these factories. No buffer exists between any two
continuous stages. The problem is to allocate these jobs to one
of these identical factories and determine the processing order
in the same factory to minimize the energy consumption. In
addition, the DBHFSP is subject to the following constrains.

1)Once the job is processed into one factory, it cannot be
processed in other factories.

2)Each machine can process only one job at the time and
each job can be processed on at one machine.

3)All jobs should be continuously processed not be pre-
empted and interrupted.

4)No buffer exists between any two continuous stages.
5)Interruption and pre-emption of the processing jobs are

not allowed.
6)Both setup and transportation time are included in the

processing time.
According the MILP of the DHFSP [7], The mathematical

model of DBHFSP is given as follows:
J : The number of jobs.
F : The number of factories.
S: The number of stages.
j: The index of the jobs, j ∈ {1, 2..., J}
f : The index of the factories, f ∈ {1, 2..., F}
s: The index of the stages, s ∈ {1, 2..., S}
m: The index of the machines at each stage, m ∈ {1, 2}
mf,s: The first available machine at stage s in factory f

under the current moment.
pj,s: Processing time of job j at stage s
ECProcess

f,s : Energy consumption per unit time of a job
which is processed at stage s in factory f
ECBlocking

f,s : Energy consumption per unit time of a job
which is blocked at stage s in factory f

ECIdle
f,s : Energy consumption per unit time of a machine

which is in idle state.
TEC: The total energy consumption.
PEC: The energy consumption that machines stay at the

processing state.
BEC: The energy consumption that machines stay at the

blocking state.
IEC: The energy consumption that machines stay at the

idle state.
Bf,j,s: The beginning time of job j at stage s in factory f .
Cf,j,s: The completion time of job j at stage s in factory

f .
U : A very large number.
xf,j : Binary variable which equals to 1 if job j is assigned

in factory f , 0 otherwise.
yf,s,j,m: Binary variable which equals to 1 if job j is

processed on machine m at stage s in factory f , 0 otherwise.
zf,s,j,j′ : Binary variable if equals 1 when job j is processed

before job j′ on stage s in factory f , 0 otherwise .
Objective:

MinTEC = PEC +BEC + IEC (1)

PEC =
F∑

f=1

S∑
s=1

J∑
j=1

ECProcess
f,s · pj,s · yf,s,j,m

m = 1||m = 2 (2)

BEC =
F∑

f=1

S∑
s=2

J∑
j=1

ECBlocking
f,s · (mf,s − Cf,j,s−1) · xf,j

mf,s ⩾ Cf,j,s−1

(3)

IEC =
F∑

f=1

S∑
s=2

J∑
j=1

ECIdle
f,s · (Cf,j,s−1 −mf,s) · xf,j

mf,s ⩽ Cf,j,s−1 (4)

s.t.
F∑

f=1

xf,j = 1, ∀j (5)

2∑
m=1

yf,s,j,m = xf,j ,∀f, j, s (6)

Bf,j,1 ⩾ 0,∀f, j (7)

Bf,j,s+1 ⩾ Bf,j,s + pj,s,∀f, j, s (8)

zf,s,j,j′ + zf,s,j′,j ⩽ 1,∀f, s, j, j′ (9)

zf,s,j,j′ + zf,s,j′,j ⩾ yf,s,j,m + yf,s,j′,m − 1

∀f, s, j > j′,m = 1||m = 2 (10)
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Bf,j′,s − (Bf,j,s + pj,s)+

U · (3− yf,s,j,m − yf,s,j′,m − zf,s,j,j′) ⩾ 0

∀j ̸= j′, f, s,m ∈ {1, 2} (11)

Cf,j,s = Bf,j,s + pj,s,∀f, j, s (12)

pj,s > 0 (13)

mf,s ⩾ 0 (14)

xf,j ∈ {0, 1},∀f, j (15)

yf,s,j,m ∈ {0, 1},∀f, s, j,m = 1||m = 2 (16)

zf,s,j,j′ ∈ {0, 1},∀f, s, j, j′ (17)

The objective (1) is to minimize the total energy consump-
tion. Equations (2-3) indicate the energy consumption when
jobs are processed and blocked. Equation (4) expresses the
energy consumption when machine mf,s stays in idle state.
Constraint (5) makes sure that each job can be assigned on
one factory for processing at most, (6) makes sure that each
job can be processed by only one machine at each stage.
Constraint (7) makes sure that the beginning time of jobs are
not less than 0, Constraint (8) makes sure that the job can be
processed at the next stage only when it is finished at previous
stage. Constraints (9-11) make sure that the machines can only
process one job at one time. Constraint (12) makes sure that
the relationship of start time and completion time, Constraint
(13) makes sure that the job’s processing time is greater than
0. Constraint (14) makes sure that the time of the available
machine is greater than 0. Constraints (15-17) show the binary
decision variables.

III. THE PROPOSED ALGORITHM

A. The procedure of the IGQ

This part designs the IGQ method in detail and it contains
three parts, initialization strategy, global search strategy, local
search strategy. The framework of IGQ is given in Algorithm
1.

Algorithm 1 The framework of the IGQ Algorithm

Input: π = {π1, π2, ..., πJ} all parameters used in this
algorithm
Output: πbest and TEC
Begin:
πtemp = π

Initialization:
Using the NEH to assign the jobs to the F factories.
GlobalSearchStrategy(π, πtemp);

While the termination criterion is not satisfied do
local search strategy:

Q-learning-method(πtemp);
global search strategy:

GlobalSearchStrategy(π, πtemp);
Ifπtempbetter than π then
π = πtemp

If π better than πbestthen
πbest = π

End If
End If

End While
End

B. The initialization strategy

It can be seen from Algorithm 1 that IGQ algorithm always
iterates one solution in the process. Thus, it is important to
use an initialization strategy to minimize the TEC. Nawaz,
Enscore, and Ham (NEH) [8] is a heuristic algorithm with
superior performance and it has been applied to solve various
FSP. Huang et al. [9] presented an algorithm, named NEH-
F, which is on basis of the multiple factories for solving the
DPFSP. This paper also uses the NEH-F to arrange jobs to
these factories. The specific details of NEH-F heuristic are
presented with Algorithm 2.

Algorithm 2 NEH-F heuristic

Input: π = {π1, π2, ..., πJ}
Output: πtemp

Begin:
Computing the total processing time of all jobs

Sorting these jobs in a descending order, denoted as πtemp

For j=1 to F
Take job πtemp

j from πtemp and arrange to factory j
End For
For j=F+1 to n

For f=1 to F
Extract the job πtemp

j from πtemp,then insert into all
the positions of factory f

ECf is the minimum energy consumption
Posj is the best position

End For
Posbestj = arg(minF

f=1ECf )

Insert πtemp
j to the position Posbestj

End For
End

C. The global search strategy

The global search strategy designed in this paper can
improve the diversity of solutions and reduce the energy waste
caused by blocking constraints, The strategy is designed as
follows.

Algorithm 3 Global search strategy

Input: π, πtemp,bool value flag
Output: πtemp
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Begin:
Computing the total energy consumption of π, denoted

as ECold

Find the factory πtemp−fmax that consumes the most
energy

While flag == true
Randomly select a factor πtemp−frandomwhich is different

from πtemp−fmax

For j=1 to n
Randomly select a job πtemp−frandom

j from
πtemp−frandom

Randomly select a job πtemp−fmax

j from πtemp−fmax

Swap πtemp−frandom
j and πtemp−fmax

j

Computing the total energy consumption of πtemp,
denoted as ECnew

If ECold < ECnew

flag = true
π = πtemp

Else
πtemp = π

End If
End For

End While
If πtemp better than π then
π = πtemp

End If
End

D. The Q-learning method

For fitting the Q-learning method, it needs to set the states as
the factories. The actions are set as the changes in the relations.
An action step is performed by a selection mechanism, which
select the strategies according to the fitness of each factory.
At the beginning the selections are random. As learning
proceeds, the Q-value table are updated, and it influences
the action selection. In the Q-value table, rows (states) rep-
resent different factories, the columns (actions), representing
different selection strategies, this paper proposes 5 selection
strategies. Fitness is the reciprocal of the energy consumption.
In addition, The Q-value update function can be expressed as
Q(st, at) = (1−α)Q(st, at)+α(rt+1+γmaxQ(st+1, at+1).
The Q(st, at) represents the Q value that take the actionat at
state st, α shows the learning rate, γ shows the discount rate,
rt+1 shows the reward value after taking the action at, in this
paper, it indicates the difference value between the new and old
fitness values. Q(st+1, at+1) indicates the expected Q value
that take the action at+1 at state st+1. Q-learning selection
mechanism can also balance the diversity and convergence
of solutions. The specific implementation steps are shown in
algorithm 4.

Algorithm 4 The Q-learning method

Input: πtemp

Output: πtemp

Begin:
If it is the first time to select these strategies

For f = 1 to F
Choose a strategy i at random for the job sequence

πtemp−f in factory f
Compute the fitness of the factory f

End For
Sort all the factories according to the fitness
Update the Q value table according to the function

Q(st, at) = (1 − α)Q(st, at) + α(rt+1 +
γmaxQ(st+1, at+1)

Update the fitness value of each factory
Else

For f = 1 to F
Randomly generate a value p, p ∈ {0, 1}
Ifp < 0.5

Select the strategy with the largest Q value in the
Q table and implement the corresponding action for the job
sequence πtemp−f

Compute the fitness of the factory f
Else

Randomly select a strategy and implement it for
the job sequence πtemp−f

Calculate the fitness value of the factory f
End For
Sort the factories according to the fitness
Update the Q value table according to the function

Q(st, at) = (1 − α)Q(st, at) + α(rt+1 +
γmaxQ(st+1, at+1)

Update the fitness of each factory
End If

End

E. The local search strategies

In this paper, five different local search strategies are
designed to supersede the insertaion improvement strategy of
the classic IG algorithm. Among them, there are two strategies
for the swap of blocked jobs in the current factory. there are
two strategies for the swap of all jobs in the current factory.
The remaining one is to use the destruction-reconstruction
strategy of traditional IG algorithm for the current factory.
All of these strategies can disturb the blocked jobs, reducing
the energy waste due to blocking constraints. The details of
these strategies are shown in Algorithm 5.

Algorithm 5 The local search strategies

Input: the job sequence πtemp−f , action r, the number of
the blocked jobs countblock, bool value flag

Output: πtemp−f

Begin
If r == 1 or r == 2

While flag == true
flag = false
For count = 1 to countblock
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Swap any two blocked jobs in the πtemp−f , denoted
the new sequence as πtemp−f

new

If πtemp−f
new better than πtemp−f

If r == 1
πtemp−f = πtemp−f

new flag = true
If r == 2
πinterval
new = πtemp−f

new , πtemp−f
new = πtemp−f

= πtemp−f = πinterval
new , flag = true

Else
πtemp−f
new = πtemp−f

End If
End For

End While
End If
If r == 3 or r == 4

While flag == true
flag = false
Forj = 1 to the number of the jobs in πtemp−f

πtemp−f′ = πtemp−f

For i = 1 to the number of the jobs in πtemp−f

If j ̸= i
Swap the πtemp−f′

j and πtemp−f′

i , denoted the
new sequence as πnew

temp−f′

End If
If πnew

temp−f′ better than πtemp−f′

If r == 3
Record the job position pos and energy

consumption value minvalue
If r == 4
πtemp−f′ = πnew

temp−f′

flag = true
End If
If r == 3
πtemp−f′ = πtemp−f

End For
If r == 3

If minvalue ¡ the energy consumption of πtemp−f

Swap the πtemp−f
j and πpos

temp−f

flag = true
EndIf End For End While

If πtemp−f′ better than πtemp−f

πtemp−f = πtemp−f′

End If
If r == 5

The job sequence of the factory is destructed and
reconstructed, the d value is a random number not greater
than the number of the jobs, The specific steps can be found
in references [5]

End If
End

IV. NUMERICAL RESULTS

A. Parameter settings

Different number of jobs, factories, and stages can com-
bine different scale cases. This paper sets the total jobs

as J, total factories as f and total stages as S, J ∈
{50, 100, 150, 200, 300}, f ∈ {2, 3, 4} and S ∈ {5, 8, 10}.
There are two identical parallel machines at each stage. For
each f×J×S scale problem, 10 instances are yield, thus, the
number of experiment instances is5× 3× 3× 10 = 450. Pro-
cessing times are produced uniformly distributed in interval [1,
30], the power consumption of idle, blocking and processing,
are produced uniformly from the intervals [1, 2], [3, 4] and
[5, 7], randomly.

To be fairness, we set same run time as the termination
condition, denoted as TimeLimit.TimeLimit = f × J × S ×
CPU ,CPU = 10, All comparison algorithms are produced by
C++, it runs in the Visual Studio 2019, 16GB mermory in Intel
Core i7 Pentium processor with 2.60 GHZ. Every instance is
tested 30 times.

B. Evaluation index

Because of the complexity of the calculation is very large,
the best solution in DBHFSP is unknown, thus, we use
the relative percentage deviation (RPD) [10] to analyse the
performance of all algorithms. The equation is shown as
follows.

RPD = (ci − cbest/cbest × 100) (18)

where cbestis the minimum result gained by all comparison
algorithms ciis a value produces by method i. The algorithm
that has the minimum RPD is greater than other comparison
algorithms.

From the results of DBHFSP, we see that the specific result
is too big to have a difference between the denominator and
the numerator small. The RPD gained by all comparison
algorithms are also very small. Thus, to comprehensively
analyse the IGQ algorithm, we not only compare RPD values,
but also compare the minimum energy consumption of all the
algorithms.

C. The simulation experiments

We compare IGQ to 7 metaheuristics. The compared algo-
rithms to solve the HFSP, GA [11], DABC [12], EMBO [13],
DPSO [14], these algorithms use the same allocation factory
strategy as the one used in this paper, in addition, there are
also algorithms to solve DPFSP, i.e., CRO [15], IG [16], and
the algorithm to solve the DHFSP, MN-IG [17], respectively.
All methods have the same criteria of termination. As can be
seen from TABLE I, the best results and RPD values of the
compared methods are highlighted in bold.

For all different scale instances, TABLE I lists the best
results gained by 7 methods. Besides, the RPD results of
methods are shown in TABLE I. The IGQ gets the minimum
value and the minimum RPD in all instances. It fully shows the
superiority of the IGQ. We give the convergence charts of IGQ,
CRO, IG, DPSO, EMBO, MN-IG algorithms in 2×100×10
scale and 4×200×5 scale, which are shown in Fig. 1 and Fig. 2,
respectively. As can be seen from the Figures, the convergence
curves of the IGQ are smooth, and the initial solution of
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TABLE I
SIMULATION RESULTS COMPARED TO OTHER METHODS WHEN CPU = 10

CRO IG DPSO GA EMBO IGQ MN-IG DABC

Instance J×S best RPD best RPD best RPD best RPD best RPD best RPD best RPD best RPD
50×5 27100 8.02 27533 9.75 26934 7.36 26053 3.85 26360 5.07 25087 0 25549 1.84 27548 9.8
50×8 47904 7.61 47895 7.59 47327 6.32 45531 2.28 45958 3.24 44513 0 45596 2.43 48684 9.37
50×10 55842 6.39 57766 10.06 55384 5.52 53981 2.85 54556 3.94 52485 0 53628 2.17 57400 9.36
100×5 56967 7.17 57452 8.08 57818 8.77 56616 6.51 56962 7.16 53155 0 54579 2.67 58795 10.61
100×8 96309 7.48 96362 7.54 96805 8.03 94561 5.53 95673 6.77 89602 0 91086 1.65 97367 8.66
100×10 115305 6.8 117472 8.81 116131 7.57 114048 5.64 115141 6.65 107954 0 110338 2.2 116998 8.37
150×5 82273 7.28 82817 7.99 84231 9.83 83174 8.46 83141 8.41 76686 0 78362 2.18 84962 10.79
150×8 143264 7.45 144900 8.68 144271 8.21 142500 6.88 143391 7.55 133319 0 134908 1.19 145132 8.86

f=2 150×10 172720 7.26 175027 8.69 176196 9.42 173038 7.46 175432 8.94 161021 0 166392 3.33 177866 10.46
200×5 103474 8.83 105276 10.72 105105 10.54 104213 9.61 104419 9.82 95075 0 96604 1.6 105657 11.13
200×8 190084 7.56 191690 8.47 194018 9.79 191817 8.55 192566 8.97 176708 0 179387 1.51 195312 10.52

200×10 227452 7.21 228427 7.67 229469 8.16 227701 7.33 228919 7.9 212142 0 215652 1.65 231601 9.17
300×5 168692 8.23 170234 9.22 175189 12.4 173961 11.61 173977 11.62 155856 0 157573 1.1 175428 12.55
300×8 275105 8.48 276250 8.93 281493 10.99 278680 9.89 281432 10.97 253598 0 257231 1.43 281593 11.03

300×10 346114 7.6 348896 8.47 354094 10.08 352528 9.6 353461 9.89 321641 0 326359 1.46 353884 10.02
mean 140573.67 7.56 141866.47 8.71 142964.33 8.87 141226.8 7.07 142092.53 7.79 130589.47 0 132882.93 1.89 143881.8 10.05
50×5 30315 6.54 30932 8.71 30244 6.29 29436 3.45 29639 4.17 28452 0 29053 2.11 31093 9.28
50×8 47355 5.35 48044 6.88 47548 5.78 46402 3.23 46911 4.36 44949 0 46746 3.99 49050 9.12
50×10 59866 7.23 60767 8.84 59111 5.88 57596 3.16 58492 4.77 55828 0 57725 3.39 61573 10.29
100×5 61952 5.65 62761 7.03 63069 7.56 62028 5.78 62572 6.71 58636 0 60072 2.44 64392 9.81
100×8 90861 7.03 92453 8.91 92332 8.76 90332 6.41 91503 7.79 84888 0 87296 2.83 93693 10.37

100×10 114935 7.44 116814 9.2 115954 8.4 113342 5.95 115021 7.52 106968 0 109464 2.33 117746 10.07
150×5 83802 7.5 84621 8.55 85893 10.19 84626 8.56 85330 9.46 77949 0 80048 2.69 86503 10.97
150×8 139326 7.65 140704 8.71 141858 9.61 139298 7.63 141165 9.07 129419 0 132546 2.41 142072 9.77

f=3 150×10 182628 6.85 184792 8.11 184852 8.15 182552 6.8 184691 8.06 170914 0 174641 2.18 186886 9.34
200×5 108381 8.42 109123 9.16 110628 10.67 109534 9.58 109874 9.92 99958 0 101452 1.49 111287 11.33
200×8 175798 8.36 178202 9.84 180046 10.98 178332 9.92 178954 10.31 162226 0 166083 2.37 181765 12.04

200×10 240530 7.33 243285 8.56 244822 9.24 242531 8.22 243783 8.78 224099 0 229325 2.33 246082 9.8
300×5 159096 6.89 159844 7.39 164568 10.57 163830 10.07 163780 10.04 148832 0 151071 1.5 164841 10.75
300×8 273324 6.99 277199 8.51 279993 9.61 279245 9.31 279630 9.46 255444 0 258825 1.32 280987 9.99

300×10 346952 6.92 352836 8.73 355125 9.44 353235 8.86 355273 9.48 324485 0 328093 1.11 355465 9.54
mean 141008.07 7.08 142825.13 8.48 143736.2 8.74 142154.6 7.13 143107.87 7.99 131536.47 0 134162.67 2.3 144895.67 10.16
50×5 27716 4.78 28115 6.29 27715 4.77 27187 2.78 27580 4.26 26451 0 28213 6.66 28803 8.89
50×8 52526 7.73 52565 7.81 51761 6.16 50435 3.44 51073 4.75 48757 0 51160 4.92 53128 8.96
50×10 67034 7.12 67178 7.35 66274 5.91 64643 3.3 65074 3.99 62573 0 65118 4.06 67241 7.46
100×5 51386 5.81 53028 9.2 52844 8.82 51789 6.64 52658 8.43 48560 0 49895 2.74 53702 10.58
100×8 89637 4.72 93585 9.33 92864 8.49 90519 5.75 92181 7.69 85595 0 88348 3.21 92940 8.58

100×10 112875 5.34 114990 7.31 114712 7.05 112482 4.97 114231 6.6 107152 0 110617 3.23 115708 7.98
150×5 82603 6.58 83163 7.3 84616 9.17 83599 7.86 84027 8.41 77502 0 79825 2.99 85710 10.59
150×8 141051 77.69 143029 9.28 143992 10.01 141598 8.18 144092 10.09 130882 0 135155 3.26 145648 11.28

f=4 150×10 190064 6.9 192768 8.42 192463 8.24 189120 6.36 191803 7.87 177795 0 181841 2.27 194236 9.24
200×5 108022 5.88 109908 7.73 112003 9.78 110636 8.44 111029 8.83 102018 0 103746 1.69 112094 9.87
200×8 187361 6.59 188692 7.35 192623 9.58 189559 7.84 192898 9.74 175771 0 179221 1.96 193790 10.25

200×10 229538 6.2 233131 7.86 236079 9.23 233314 7.95 235597 9 216126 0 220806 2.16 237844 10.04
300×5 182590 6.98 185142 8.48 189360 10.95 188237 10.29 188950 10.71 170665 0 173490 1.65 189161 10.83
300×8 287682 6.45 290146 7.36 296315 9.65 294100 8.83 296397 9.68 270237 0 275278 1.86 297048 9.92

300×10 334820 7.1 340687 8.98 346698 10.9 343957 10.02 346228 10.75 312606 0 318926 2.02 347642 11.2
mean 142993.67 11.06 145075.13 8 146687.93 8.58 144745 6.84 146254.53 8.05 134179.33 0 137442.6 2.98 147646.33 9.71

the proposed algorithm is better than other algorithms. With
the increase of the time, the energy consumption of the IGQ
algorithm is smaller than other algorithms. The reason for this
result may the IGQ can extensively search the current solution
in the local neighborhood, and the global search strategy can
further increase the diversity of solutions in the later stage of
the algorithm.

V. CONCLUSION

This paper first introduce the MILP model of DBHFSP,
next, we propose a Q-learning method based on IG algo-
rithm, namely IGQ to optimize the energy consumption of
job sequence. In IGQ, NEH combined with the global local
search strategy is designead to yield an initial solution, then,
a global perturbation strategy and a Q-learning framework
are developed. The numerical results show the effective of
the IGQ algorithm. Our future work would design more
and more strategies on the basis of IG algorithm. Later,
the multi-objective optimization of DBHFSP will be studied.
In addition, we may research the assembly process or the
batching machine problem, or make uncertainty restriction
into this problem, such as the dynamic scheduling, machine
breakdowns scheduling.

Fig. 1. The convergence curves for compared algorithms in scale (2×100×10)
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Fig. 2. The convergence curves for compared algorithms in scale (4×200×5)
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