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THE  AERFRESE, B3 55 F (automated guided vehicle, AGV) 5 AL 2 # % pk ¥ xt 5T T B[] 5 Ak IR
HEHEARDWH. AW, WA REF LR UGRIE AGV B8 5 LHAT, Ao AR EEELERFEEZET,
ZEALARY. A, AXRE - MHREBUFIRBNRE LS HFUERCEE, U2 A ZR ENENTA
BAE, A RERE Lt RIEMEE. B, 44 AGV Tk tk, Wit Rs B F B & X ek, DLptth
el ALBR T WEE, RAMEERTE. LA A ERETHARMOEA REETRERAFIH
BREENF, U RENLEENHRYE, RELZZESRAUNE. GFEXREA, AR EET TR S
RN EHDE R TIA F %, BT A%

Xt oA AEEELFERE, AR5 FER, RE - SHMEAL RERLFET, 2 BAMAL

il

1 3

bEE 9 Refilid R R, AR IR AR ks S I E R H 2 g8t M. PRk 22 1R 3 5 7] @ (flexible job-shop
scheduling problem, FJSP) #&—2& NP-hard [ &5 804 &0 4k 1) A, AR 14 G v B v ol 5L 20k 121, Ak
G0 2 (A1 P e R R T (00 AL AR W A2 TS [ i 1, 1 FISP VRS 17 7E 2 N nlEdLas bt
I, I HAFIMLES Bn TS [ mT e AR, R ZA =B T 7RG, B InR T REEE. 331551 %
(automated guided vehicle, AGV) YE A% A i3t 1 B B BGER 7y, O 2 BT FISP, PLHR & A B 1 E Bh koK
S B ghAk, Bl G R IR T, A MR ML A AR E (distributed FISP, DJFSP) 52 2|72 K. MLk
FJSP, DFJSP ¥ K& Z /NN 1), HA T m i B RGP, Bes bR B 58 Sk P2 AT 55, SRt 22 e 11 v 1 R
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7E DFJSP-AGVs H, AGV & S5HLE8 I TAEMV T & R 5. AGV i BH R0 5 S/ L K T 4R i 1],
ARV N TSRt Rk e AGV @i ERL 67 Rk, 88 RGN INAE S iz iy R PR T e, 25
AGV ARG, AMUIEK 58 T 8], 54 B INaeke Bl ik, Wit @R se ik lsi il AGV 54771
FERIPh FERAL, SR RefiliE RA R CEE. Hl, K270 DFISP 5 AGV HEE/M AR P #£ DFJISP
HH T2 AT TR T A AR B Gn 5 N D B T sl v ds e B DR JE PR DOL; 1T AGV 1 EERIE 7 0 S B IR AE TAT SS A BiL
AR 1, BAR FIRWR A R T A E S AGY B A E R E R R L FRER. R
EEARACTTA REEF A= 80%, (A A R ERETEVRE, X EREE AGV BAMIHERA 58
KE [12~15].

ULAh, BUA 9T 2 45 P T /M 5 LI TR), %o 42 A8 B2 R R R RE AR AL Sy /b . FESBRAE =) AGV I8
REFEAE S REARE R o5 LU, DR TN REHRE, FOH R B 1t g s i 25 (161, ZANREII0IE 7 E M /R
MBI ) o, ARk AGV T B35 B T RERE ST LI T T AR 7= 2R U0, S0 R o, is i B shif 53 me
PRIR B, BEfT RS AR e U b Ah, TR RIS, i AGV SRS A R D T RERES 58 TR [A] Bl 7R
AN N AT, AGY TR ke 5 e =R s 2 spm 181, 2% b ik AGV BHREFETESE AL
VW E B S S ST AN

K AR FISP Al DFJSP, B W 78 BAFEEE vk 192U Fioo s BB 220 B RZ R &K AGV 18
1. TE5FE AGV 2931 FISP WFFi R, BRI R 0778 BT~36L o 3B 7t 27~300 R AGV REFE,
TR RN AT ORISR B33 RS O TAE 4 A g s rh g it B4 3% (HZ RE TR E
U AE AGV. Luo 25 B $2 TR . L) 2 BCAIHL A 2 B P sh skms, EEkZ 405 ACV 2 EEHIfliib
Bl

SRS, AHTEXYT DFISP-AGVs B S RCA IR, HA i 240 AGV W BEX ReFE 5 47 i i s . 2
BT BT R AGVY W BERRE, AT At S 20 52 TN [ AT BERE_ERORAL S B [F, Bl 3L T RENLE B
HREHLEERZ X AGV IREMAE @R, GFENEMRR, BERHBEA R BT~ Fith, s&EF R &R mr
AGV R A SR AN 2R SR

B s ) A, A SR — R B AR S Q W4 (deep Q-network, DQN) 58 ZFEM: (quality-diversity, QD)
A HIE A5 DQN-QD. QD CEHES 4 UE SERE 05 45 RO RS Jy 30 s i, FEAE ZREMEIR R AR T 2 Btk Giii
A BRE A0 S TV ] A R T LA NS A, I ©7E Nature JAT A AR SCHE 7 (412421 FLIR St P Bk
it 592 R IGAE R (It 7 T SE . LN, 7 DFJSP-AGVs H, HLEs N5 AGV izfim 4, LR m LK 5%
T A REFE. QD RIS EA B IIAT R AE A SRR IE 25 (0] DA I R FE (Pareto) f4E, MLAS NS AGV iEHiimT H
SRR NN ICERAT AL, SRALLE MG 3 MR R AE 2Rl DQN F 4080 QD fifh, RIEIHLIETIRE S
I 28 TR AR PR IR PRI 0, T N A o T B SR (32480 M LR AR G VR A Q A ) S BRAR A 3] U5 v B T A Y SR
)51z ALRE 7). BT DFISP-AGVs HEZ 5 S & RE 1, DQN @i RFERMLHA 205 R R T m, #27+
HRBCRIFBRARTERARER. WAk, A — 58T 7 AR B PME Ja & I R s, 23T T 5L SGE
ESMRRRE. SR as RAR M, FTItEIATErERe REIA Sl TR 4%~15%. 45 EATR, A SO FZ TR
/U

o KRICEMXT AGV izfii5 DFJISP HIAE R BE 0 ot 7, B 7E R R4k BEFE S 5¢ TR a]. J@id 5| N AGV
IEHRFPEAE N OBRARHAE, (R 3E VAR I RIERTIE BRI SR B @ S 4. 3T AGV B¥ifFE, DQN-QD 1
FHEE M NIRE 1z HZ P B0, @ — BRI 7 RN R & 5 &t

o ARICWAT T RIS AT Bh A PME B R I SRS, JE ECALVENL . ML AN T AR AR, DA AT
FHEP . LI REW, MR TASERE T, S8 R IRS AR R b R RS, 30IE 7 A4
PG FEARAL H A 25

o SNFRTHEEBIAE R BE SRR 2 IRAOR L, A SRR —FR T DQN Y EE TR LS. AL
HilH AGV. HLES TEMEFI T PR R AE M SN, DL R R R et Bl shA ¥ 5 REBH T
TEPETRMS, 12720 RO T BEALE R T B S EUN RO &R, 12T TR R A RAR R B 1 5 R T R BCE.
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* 1 FAELIF2ERIHEFIN TR E.

Table 1 The machines and processing time of each operation.

Oi; M/T;; Oij M/T;; Oij M/T;;
o, M1/5 Oas M1/4 Ou1 M2/6
O12 M2/15 O3 M4/3 Ouz M1/11
O3 M1/5 Os1 M3/7 Ou3 M3/5
O14 M2/7 Os2 M3/10 Os1 M4/11
O1s M1/3 Os3 M1/6 Os2 M2/6
Om M1/5 o M2/4 Os3 M1/8

* 2 EEMaNRZEREHEE.

Table 2 The transportation time between any two machines.

Depot M1 M2 M3 M4
Depot 0 5 7 5 3
M1 1 0 4 5 9
M2 13 4 0 6 5
M3 5 6 7 0 3
M4 7 3 6 3 0

2 [E)EEfEA

DFJSP-AGVs ¥ Rt FIENS AGV @fufhik, BAMEREE R RFESRLA RS LS FZE R, 12
B AL ME B RS 5. 7E DFJSP-AGVs 1, RAEH AT S 3% RIS AT IR, REHLEs 5 AGV IAFE
T &, P& R 2, M AR REVR T FE AN 58 T [A).

EF % DFISP-AGVs, T EARLLL T 4 PMRBAES: (1) KRS ESANT) ;5 (2) #ie THF; (3) K/E
(0T RS BARHLEE, (4) HiE AGV BHMMEL. & F ={1,..., f,..., 1} Foml | AT 4UlisEs, AT
"N S m B FISP, MBS SES R RA M = {1,.. . k,...,om}. ZEn MEW T={1,...,i,...,n},
Ho FAMEN ¢ B w, ML Ji={1,...,4,...,w}. FrAELFERDT v & AGV BHTi8%, AGV 4%
WA A={1,... a,...,0}. HIEWMEAES LR —GHLE LT, WETR AGV &fi. thsh, TJF 0,; fE 1)
£ HINLES & BRI TR RIRIRA T g

KRG T HLas 1R K AGV FEEE AR S AT . SAMENL A BEEME— 1 T, HAEREA
T W, AN TR Z H G T —E Ty, TRRn T RaE R GhLes e, — BT, AN Rvrgl
TR AT 21k, thA, B E AGV IR ARz —MEL, HEMELREHIEEHE—& AGV 8.

S U B ), ARG AR, Hod, AT NIIELEL n = 5, HLEREL m = 4, AGV $ &
v =2, K LT npmae = 18. R 1 FIH T & L7 PINLE 7 Bl S X RN TR, AGV 7EAEE P & HLE 2 ]
i M PE LR 2. B 1 R THRAS T W AT R 720 E R, HoAth T r s oy L. 72
L BRI T TP AR R R R, ARG LR RAF T AGV. M MR Z I TR, AGV
SRS EUE L, s a e e ALEs. A, RS G, AGV S L RIFTE N — P55 B i 1)
HLES, SE S aTHLAS LS54 (O F— 8 LR H R — G HLas Lk T).

H TR iR R 1, DFJSP-AGVs [IfF5 8 AL R & C/EAb ek R et B AR Boe L k.

AR SCH H bR RO 52 TS TH] obj, FAREFE obj,. TPE FonfENLEINI T RERE, TIE RRPLES A2
INBERE, TTE Ron AGV HISHIREFE.

Minimize obj; = Chaa,

—~
—_
~—
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Machine/Depot
A
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Figure 1 (Color online) Gantt chart of a single factory. Other factories are similar to this structure.

Minimize obj, = TPE + TIE + TTE. (2)

(1) TR R SRR a0 R, Jodt PPy, RN B LSS & IIN TR, TP, RoR L) f
HL#S & =0 ).

TPE = > (PPy-TPyy). (3)
fEF keM
(2) FLESRARE FALE AN BERETHE T, o PL, SR HLE N BARES N B AL 1) A BLES & 1
TINThE. Tl Row L) f PSR & S RIS A

TIE =Y > (Pl - TIfz). (4)
fEF keM
(3) AGV ¥R REFETH SR, Hb PT, Fon AGV o fESAII I IS ST, TO, ;.. £~ ACV o ¥
LI O jy IBHBINLEE k FI0 TR R E.

TTE =) (PTa > TO,»J»,G) : (5)

acA iET ' ET,

3 ETRE Q MEHRE - SHMRLEE

R AE DFISP-AGVs, A3Cueih 17— R TRE Q MR - SRR, A ka4 QD 5
22 —: MAP-Elites [*4, 1 NFEAMHIEHESL. MAP-Elites KR 25 7] B #tk B 2 A BT L A, FH7E4
AT AE A 2 AT B DA O R B D SRE eE. $R TR, ASOREAI/ AZ E R SE L AR, SR REMESL . g
S 730 PRAGS BEETALA L EREE Q WA LR PR IR e A g Y e

3.1 EAEZRE

f£ DFJSP-AGVs H1, 8200 56 T (B A EEFE PN OSBRI /2 AGV 185 iR S L 5 IR . B 4 R A
[R5 (A, ﬂui& AR B AR R EE. QD kAR 7 R IR )RR, DA R E R H 2 A
IR T . Nk, ASCEIN QD HEZE, FELL AGV I8k BURIMLAS 25 R UK EUVE A 2H AR AAE 2 8] 75 S 4 %
QD 38 b REAE 23 ) B U A WA, FERRA B0 HR A7 A0 SR AT MRS, FRAE 1R 2 7] P AT B 388, AR =
WE 2 fros. A, ASCHE QD HEZE LR DQN, LARTRE S| 3ok #E, it — D an Sk R ae h 5k



RiEHE PEMFE:EEHE s

____________________________ Step2:Determine which

Step4: Extract batch [Input Valuation network Qv.i(6:) : local search operator to batch

transactions from [layer be used by a, from the transactions
experience pool and output layer. I (St> Gy T2y S147)

put their states s, into
O.ai(61). All g-values
of O(s;,:) are
calculated.

os' MS FA AS

Experience pool

3080 —

a, f—

; *(Sn Qyy Ty Sy21)
o o o o j Feature space

MS' OS FA AS 1 )

o ©000![T-] -
0000 1T,

N\ N\

\

\ \\\ \
\ W\
DAY

a,

L5 N
K o o o o 4)e

Solution x —» FA' 0S MS AS r T
Stepl:Randomly select 8(70ncato 00 (K1 ..
2 solutions from the ‘ir> —)o o o\ o ? °
feature  space and — 0
perform crossover and AOS' 8 g g e I
mutation operations on (o) 000 /-
these solutions. The ﬂ» oConcato 00

S Step3:Add the new
(o) 000 generated  solution

Os., ay) to the feature space.
Pa— Obtain 7, and s;+;.

solution with better
performance is selected
as the state s, and input

into QOva()). Update 6, Loss function
Step7: Update 6, of qf
. Step6:The g-values O(s;, a,) and
(02) eve [ steps . ' At
Or(6>) every pool step: Stipé +(,:aic$:;eg (f' by Tl)le equation g+ are obtained from Ouu(6;) and
l O(se+1, 1) L=y i ) Oul(6y), respectively, and input

St+15 1 them into the loss function,
Target network Ou(0) = where 6, is updated. I

2 (MERFE) BOEIMIRE (P8 1~3) RRKBINZEIRE (P8 4~7) ~EE. BHhRITEBAREFNTRE, BEFHE
TEFEHE 4 MEBIER: (1) EWEETAT, NIERNBERENN; (2) EMERTEH, BF#EIBERNE, NEH
BATHE—BIERT, B ER—NEER; (3) BRREREH, BMBATEER, WISHEEMA; (4) HHETM
THAIEMRE, WEEEF.

Figure 2 (Color online) Illustration of the solution update process (Steps 1~3) and the network training process (Steps 4~7). This
figure outlines four typical scenarios for updating solutions in the feature space after applying heuristic search operators: (1) if the grid
cell is empty, the new solution is directly inserted; (2) if the cell is full and all stored solutions are non-dominated, the new solution

replaces a randomly selected one only if it demonstrates better performance; (3) if the cell is not full and the new solution dominates
existing ones, it is directly added; (4) otherwise, the new solution is discarded.

DQN-QD HEARANEE 1 fiow, e NEARMARLEE N, 4R KVD batch, £ T o, FTHIRT 4, 25
i Sp, 7O T e ) Epoch 4. Hith GHERHE — PEREMAE, b P (b,) A1 X (b,) 735l s MG ALHE b, 4b
(1) B AR E A A SRAEAREE. ERE 1 P, 28 2~d4 ATRRWILEN ps AMEFHIG LRI BIRFE S (8], Horb, pRi%L
Add_to_Grid (P, X, 2) TV WIa6fE, b o R AT, WA SEPRE L. 56 5 7R R S 4L batch, o, v, ¢,
Sk, Epoch BIEEMZE Quar(01) FIEIRMNEE Quar(02). 25 8 AT R NEFEN A « M o/ BATSGE. Horh, f#
MFFAEZE (8] AR SCRC AR SR (T A B e N ELAN SO AR AR ) whoadk B, T o DU ERTL AR O =2 1) B 3 S A 4
HOREL. BEJS, SRAHTT RS T Y5 XE T AR S5 o 1430 X o A0 o BEAT RSN, ORI .
PR EA S, WIBENLERE—MRER 2. 55 10 78RR o 1ER 4IRS s i DQN, B/E 5T ¢ fHik
FRERME, UHATINE ai. SW1E o BIEREZSHL ¢ M B BENLEL rand /DT €, MMAAEINES Quai(61) FIEFE ¢
B EIE a; B, WA SIERPBENLERE A a (11 17). $UT a0 JEZERBRE 27 (12 17), IR AR
TN=AIRE se1. 2B BATHEES (siy ary 74, se1) NG, BESS, GRMGE ML Quai(01) FEHEHT H AR ZE
Qtar(02).

3.2 HESEH

TEVHA R AT, AR SCH S48 DRISP-AGVs HIGI%J7 5. 530k [45,46] AR IR, A SCR 88 5edm i
TT KRB, ZIIETT R 4 N EHB: (1) #BIEF S (operation sequence, OS); (2) HL#51E+E (machine
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BE 1 B TRE Q MARRIBUR — ZAIEILEE.

I N, batch, o, v, €, Sg, Epoch.
1 VIGRAAREE X« 0 FIARFEMIS P, AR N 4ERIHS,

2: for i =1 to ps do

3: {P,X,x} < Add_togrid(P, X, random solution()); // 5% 3
4: end for

5: WIAHAGERIZE Quar(61) ATHARMIZE Qrar(62);

6: while Z LXK L do

T for i = 1 to batch do

8: WA = M 2!, B SE XS SR L TR y AN 2, JRRIBTLSCRC G &, IEFBIRIARIE N 2
9: {P,X,r:} + Add_to_grid(P, X, z');

10: St T, St41 +— T';

11: at + arg max Qq; (01, s¢) BENLESR;

12: PAT ar, HERHTE 27, FFHH P, A5
13: ﬁ’ﬁ% (st,at,rt,st+1) ﬁéé%“lﬁj,
14: Ik Qua1(01) HEH Qtar(62); // Bk 4

15: end for
16: end while
i RHE - MEREME (x AT P).

|:|J0b1 |:|Job2 I:IJobS |:|J0b4

oS [3 241 |43 ]2|2|43]1]1

V¥ oY oYy vy vy Yy
Os1 O21 O4p Oy O4p Oszp Oyp Oz5 Ou3 Os5 Op; Oy

MS | 3 | 2 1 1 1211211313 1 3

FA 1 2 1 2

AS 1 2 1 2 2 1 2 1 1 1 1 2

N N N S S S S A A A A A
Ol,l 01,2 01,3 02,1 02,2 02,3 03,1 03,2 03,3 04,1 04,2 04,3

B 3 (MEhMFE) AITRImEREREE.

Figure 3 (Color online) The encoding vectors of a feasible solution.

selection, MS); (3) ] 4rEC (factory assignment, FA); (4) AGV £+ (AGV selection, AS). W 3 s, FEIEM)
AFRBEREA R, FA F R RS TR EHE n, T OS, MS Al AS FEKMKEZEISET B T nmas.
X AHE TR Oy 5, FATE KNS AH R, AEAEA R ) Hr fn T [E) Ay gE AN [F]. 8 R 4 A RS 3
fiE 7 S, AR FLBEAT PRA.

W 2 FoR, ¢ Fon 2 BIMR, 1 OS, MS, FA Fll AS iX 4 ANAEATE . FERALIIIE A B bR5e T E
FREIRIEFEST A obj, M1 obj, FRox. H, b, RRFHEZE N NI A NT X R AAAR, Hrh NI RoRPLa 2
KL, NT Ron AGV &k NI A NT B0y %8, BB 735109 0 ~ npae AR 0 ~ 20400 (5EE AGV
RS EE B ). BRI T Bk E TR (8] B K/, — ELRPAE =3 (A R i e B, HeR/INANAR . Ak, T 1
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£ 2 tHET
BIN: fEPT S « tH OS, MS, FA, AS 4.
1: #I4EH NI« 0,NT « 0;
2: for pos < 1 to nmae do
3: RN O; j, HTT 7. bLgs Ui,; FlAGV q;
5 AT, < 0, APy < 0;
if j =1 then
ATq <= TRap,,0 + TRo,u, ;;
AP + Uy j;
else
AT, + max(AT, + TRAP,,U; ;_1- Cij—1)+ TR, ;_1,U; ;5
10: end if
11 W AGV isHgERE (3N (5)) IR NT;
12: if AT, > Pf,Ui,j then
13: LSS TN AERE (X (1)), BB NI
14: end if
15: anc A Start; ; < maX(ATE,Pf,Ui,j); AP, «+ U j;
16: Ci’j — Starti’j + T’i,j,f,Ui,j; Pf»Uz‘,j — Ci,j§
17 HEITREE (R (3)), B Py, M AP,
18: end for
19: W BARE obj; Al obj, (3 (1)~(2));
20: by < (NT,NI);
Hit: {obj;,objy, b, }.

© %X N> TR

R, ARSCEINE L5 NS AT,, AP,, Py, Uiy F Start, ;. o, AT, FoR AGV o 7548117 R0 Rt
BRG], AP, RN AGV a WUFIALE, Pry R L) f FHLEE & AT RES, U, RAPATLIF 0, 1
MLES, T Start, ; £~ LT O;; FITFAE N T A,

5 3ATHER TR LF O, i) FLEEAT AGV IR RITRE. 55 4 TRRIEE AGV MWIIRIE I
AR, ok AL B BN (U, = 0 RonHEESE). BiJG, 55 6 fTFRRiHE AGV Mgkt Ial AT, FEiE
AGV FTERIIETEN ST B BINLEE AP, (5 717). 28 9 AT IHEIESS —E T8 AGV [Wigkait[a]. 25 11 4715
AGV MREFRERIZHIREL. 2 12~14 ATTHENLEE U, MIREFERIZS NI R Bl 580 T O, ; MFFURISA] Start, ;
(15 47). 55 16 {TRRNITHE 05 WSS TR C; ;. 55 17 471HE TN T RERE, DARCE T T L8 a8 il
B EAD AGV AL E. FESEREAL S (35 19 F1 20 47), AT IR IZARTEREAE 23 (7] P 6 B2 (i B AT ATV AL b b, S LW
AN HPRME.

b5, 00 5E & R Z MR N BRHE 2 (A . BRI S FR FE L 3 Fos. #5590 P (by) N, MG RE o
IIMBVREAE 2 A 22050 r, WEON 1 (38 347). & P (b,) NAES, MAFZHICHMEE. & « MXH g
¥ AR (IEE <) BCEIESCRD (IEME <q), H#IC b, WERIEE/NT P, WNKE o VI BVRAE 25 (8], 158 25
N5 61T). A b, WINRECECIE BIR P, WIBENLE #z o P i — AN 2, I T 0.8 BISLD (28 9 17).
W, 45 o BRI b, FEIHMSCE, AT R, JFRe 22 o (3 11 4T). MR Ed fRan il 2 Dk 3
Fi7R.

3.3 RE Q M

DQN HINZR AU T 75 DQN B, J855 (54, ay, 7o, s041) BAHPRES 5,3 ZE ap 2 7 AR —IRES
se1 ZHEG. ERENRSED ¢ JTUGIS, DQN B REREANAHPIRE s R SRS, 2 R IRIREER) OS, MS,
FA A1 AS ARSI, IEASHTIN EE IR IT. S, B REA L FE M EE o (IR ARSI RET) Il
AT IZARAE, BT A BOIT BIPIRES spp1. RERBL—ANB I, AIHESI RIZEE NS — N RFED ¢4 1. HRI
U/ I pu
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& 8 WHk
I P, X, x.

1: {obj;,0bj,, by} < evaluate (z); // Hi% 2
2: if P (by) = 0 then

3: P(by) + {obji,0bjy}; X (by) + z;7 + 1;

4: else

5. if (X (bz) <z or X (bg) <4 z) and |X (bg)| < 6 then

6: P (bz) < {obj;,0bjy}; X (by) <+ x;r¢ < 15

7. elseif (X (by) <z or X (bz) <4 ) and |X (bz)| > 6 then
8: Pl (by) + {obj,0bjs}; // k] IR P (b)) HEI—ANBENLL B
9: xlx] (bz) + x;re + 0.8;

10: else

11: e < 0;

12: end if

13: end if

W (P, X}

KA (state). WKl 2 FEHR 1 PR, FERSED ¢ I, R3S s, 11 OS, MS, FA Hl AS &L EAR TS,
IS AE XA S A A R AR AL RS s, FHFRIAE DQN N E.

BME (action). WKl 2 FIPHE 2 Fis, DQN &£ M311ER B K AR E T LS1-4, HAr 2T 4 Fin) iy
P (FEE FLES . ) AGV) #4700 R RIEARH, DQN FFEHE— M EA B Rk R R E5 1, UM
BN IR, 8T LS1-4 W BEARREAE 3.4 DT TELN4H.

E% (transition). 48 REARTEENE o LG, ZAERRIPAT, BEMA RN —RE s (BIHTAE). 1t
i, 8 R A R E N TR R i &

K% (reward). ARFEAFFAEZS [ H ) fF BOFALE] (IR 3), ANEIEOL T B IBNME r, A FTA . B
R, FEA BTAG R BT P 28 SR8 S SR R ARFAIE 225 18] N B AT SER IS, BRI ry.

M£&LEH) (network structure). S5 CHR [43], MHE ML Quar(01) FHARMNLE Qrar (02) EA M IFEIMIS5H.
P BIH 6 MAEREAEN. nF KR BN, mF ROREE b B4R ST nll: In,
ml: 128; nl2: 128, ml2: 256; nl3l: 256, mBl: 128; nl4: 128, m: 64; nlol: 64, mbBl: 32; nlfl: 32, M6l: Out. HA,
In %7K OS, MS, FA, AS [m# . PN B AR K AMFFEABFR B, Out T i K AR E T RI%E. AL
JZ 2 [A1R B2 1 BT (rectified linear unit, ReLU) 1F ¥ pR 4L

DQN HIZk. HiE 4 JE7x 7 DQN Mgt #2. N EFEfLE /DN batchy AN Quur(01)~ HERM
28 Qrar(02) LKINEE S ~, Sp Ml Epoch. IIIZRM H 2 TG RIS Quai(01) T Quar(62). 5 2 F1 3 ATHIR
MZE Sp HHBENLIEEL batch HHSS (si, ar, 1o, se1). 55 4 ATER HIRMLE Quar (62) I (6) THEHFF ¢
H g

@ =71 +v*maxQ (sg11,:), (6)

Horb, g RoRISIAIE ¢ eI AR g 18, re RWEEE ¢ AERORIN 200, 401 + TP R 2250 5 R R 22 i,
DA E A5 2 T TR SR TP AR L EE. max Q (seq1, ) BIERE s TITA W RESIIE R I 14, B8
Ja, AL Quar(61) THE Q (s, ar) (BB 5 47). FEBRTF Q(s1,a¢) M g Ja, B HURRBHGT R EAIZ WM ZE R, %
PR R EUE (R

1 batch
T0) = g 2 Qo0 — a0 (7)

Hrp, J(0y) BrEAE—DMEEIGFAT, B ¢ B5 HAR ¢ E2 0P8R ZE. IR0 H AR 2 i ME iz
KRB H, Q(se, ar) BISERIZS Quar(01) $RAL, AR T ZATSRMS, 1ERE s RIENE o BALTHER. ¢ W
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B3k 4 DQN It FE.

iﬁ)\: batCh) Qval(el)’ Qtar(02)7 Y SE) EpOCh'
1: for epoch < 1 to Epoch do
2: MG Sk FEALIERE batch HEF 5

3: RELHFE T Sty Aty Tty St+1;

4: BT Quar(2) A (6) HH BAR ¢ 18 g1

5 I Quar(61) THETIAT Q(st, ar);

6: M (7) AR G

7. I8 Adam AL RMEIR R R, TN SHL 045

8 /) WEBKRREBAHN T 00 KIBHE, FFUAE PRI KITT 7 BT 0,
9: if B HKT Sg then

10: 92 < 91;

11: end if

12: end for

iﬁﬂj: Qval(el) jFl] Qtar(GQ) WJ%

R th BRI Quar(02) THELAFEIH) BRI,
BT ATFRU B, RIS Qua(0r) MZ B 1. HRIERMAYRL, 1% DB R Sp W, HERH
UEIRZH 0y AL 0, HEATEHT (5 011 47). MRURTT 5104 SRR IV RSN 15 7E R 2 it — .

3.4 FRBWEBITMER X IR RME

HRHEBIIPME B R R 4 FlE R AR HBILZER (local search, LS) H1. MRHE TR EWE
DQN $ATFABIE ap. Horb, LS1T TR HEFHF, LS2 45 ML ML 3 e 5, LS3 fEH T 1) /e, 1MiLs4
MHT AGV @i . @i v F N FA 4 M7, 7] DLE 0% OS, MS, FA il AS W &HEF, it i
EES

LS1. fE L) f WEENLER AN REL R TP, ZZ#EAE OS MEF A E.

LS2. HEM OS MEHFHHLERE A T O, , 7 MS AR BLRINLES. K, 8@ FrE nlin T
ZLFHINEES M, ;. BACEZ G ATIENLEE, WER S BGZ TP TS, &5, 76 MS MEfERx T
PN 405

LS3. EAERMEE T £ (Bl T AR KT ). S, NZT) ki — e, 55— s T
B ALIE B B ML BE AT 58 4. 1223 Holh A0 A2 [F) — MV B BT T s Z0AE Rl — T I 2R, 28 e 5 B,
FHRAENLAE FA Ta s § T 43 Be s Bt Bl 2 55T

LS4, BEHLIERE— T O, 5, M AS BRI RIZ TFX R AGV a. FH A AS MRS 0, FiHmem
AGV, PUAERGHT IR BT .

R E R B T AN [ DS R TR R R ER. ML AR I AR T I, FEAMARE T,
SR 2 )3 R R B 5 R A R 2 G Ay, SEIU AR HE 1) 2 dE E A, NI S B —H BN SR R sk
PR, L=, 7ESRREZ T, DQN T 2007 8 BERAS B & MBI S A MG, % 2] S HFAEAN G T B STk a8,
NI B PR3 T e R T DA KA as . i WMENLRIRN QD HEZE R B E 2 R R 5 REIT R
(i) S EIL -1

3.5 HKIEEFESH

firft DQN-QD Sk I (8] &2 2% 5 B 2 iy SR 3 . X X525 MR A RIRIME R R R H
H% . DQN LR 5IIZRUE . W HATIRECN batch, Hifd A& K EEA L, FHEZ KA npas X 2nimas,
) 388 73 A R PR RS A R SAR I T A BE A O(batch X Nupag X 2nmag). 1B TIZ _4E R P A £ KA
FICHS, A I TR AR, ARG A R SIC R AR AL E, LI (R 2 FEEY O(batch). 28 X538 5+
PErh, BREE WSR2 8] e e A SRR IEAT A, LI A% BE 0 O (batch x L). 58T 53 F T4 g g
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SEINFHEZ ], B SRR R AT SR B, — RGO T, Fifid e 5 4ok oam (w2 o 1) i
ITHER, BRI EARE N O(5). HTHREZEH—AHIok, B BEZ AN Oatch x 6). KRR
FEN N, PATHREME B K I 2R FE O R R 248 O(batch x N). #f DQN AN JZ4EE N In, 55— 2
g N ml, T BRI Z SN AR Z 4E YO e E, B In iR NGERE, R SRS Sk 28 (T A 7B R 24 %
N O(batch x In x mll). WHZ ML MR SHEN 0, B MNEI I KAFE batch S ICHBEATEREE T, W—k
WZRE R RN O(batch x ©). #HEFACYIZRIEAT Epoch X, WIZRE Z8 A O(batch x © x Epoch). ¥ ik
REHCH T, U DQN-QD EI[AIF 24 BEA O (T x batch x (1+ L+ 6+ N +In x mltl + © x Epoch)).

4 {FEXLLW

4.1 SIEE

530wk [43]) PRIF—3, ARSCHE 15 DASF RS IR SE ] 30T S256, RA SEBIASIIZAT 20 IR, DA IR SE58
SERRA . Hod IR S AR ML B B E N @ e {10, 20, 30,40, 50,100}, T.] EREN f € {2,3,4,5,6,7}.
AT W% 5 GHLEE (1 =5), IE& 2 6 AGV (v =2). Hi, HMEL i 88 w, =5 BLFE. &LF
RN THEE] T e FEIXTAD [5,20] RIS ZIBENL G, 26T AGV TENLAS A FIB S R], S SCHR [47]) #2140t
(A UERE AL, DA DR B (0 & BRI AT L. bk, BT SRV 2 b PRI e R VA B, Fat o7 0Ok
Max Iter = 50 - > w;.

4.2 LWIMESIFNIERR

SEIGAE Windows 11 #E RGuHA 5 3T, iH 57 & KA Intel Core i7-13790F @ 2.10 GHz A28 A1 16.0 GB
WAE. S9548 A Python 15 5 SEHL. KR4 SCHk (48], ASCRH 3 F12 BHARLAL PR Fa b HAEEE] (generational
distance, GD). &IHACHEE (inverted generational distance, IGD) FEHAF (hypervolume, HV) 25 W B
ERARA T REREAT EALVRAY . BT 58 TN [A) 5 B BBV AR BUE R AFAE BUR E 57, Tk HARE #EAT 5 — LAk 3,
DABF O R PR AR & BEPE. AN, bR T 5T Il R B S SR ATARER AR R, A SR FH A R AR (1 s AR Al R AR
ZEMN RICME, 1CE P~

(1) GD. iZ48bs F TIPAG S sl Hog SCHBEEA RN RSE P, Th MR ¢ RIS RS P i i
& Z I d  NRO L ELAS R B, GD BB/, 6 ISRV A 380 ) e AR il e S by SR 4G R0, RS siotE A,
D, (P, P*) — \/ECePg mingep- dis (C,€)27

1Py

Ho, dis (¢,€)* Rl ¢ B ¢ BN LRAFIEES KT T, |P,| RNMESE P, FIEIECR.

(2) IGD. Zfesr Sl EMAE P, USIER At & SUNSE L P MR ¢ 215 P, T i i
C PP LSRR B, IGD BB/, 15 B B 1 23 A 1t RIS S R .
> ecp- mincep, dis (¢, §)

[P+ ’

Hor dis (¢, &) Ronfg ¢ B ¢ M/ N LRASEEES, |Pr| R RitiE P h g,

(3) HV. 4T &ML P, WSt oAt Hog SONBE g A2 B AR SO AR S i 78 o (1) H Fr 2 TRV AR,
HiZAE S S 5 re JLRIRE. ALWE re A (1.1,1.1). HV {EBK, S g 2RISR RERL.

®)

IGD, (Py, P*) = (9)

HV, (P,,re) =L U {IC<E<re} |, (10)
CEP,
Ho, £() FoRiiEE Py 1) Lebesgue ML, ¢ N Py IR, Ueep, {€IC < € < re} Fom € KT ¢ BN T
re [FI{E.
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&3 FIAXLEEN GD &R, MEFARTEEE. 1 RRZMEEEES DQN-QD #EEEMER.
Table 3 GD results of all comparison algorithms. Bold fonts represent the best values. { indicates that the comparison algorithm is
significantly different from DQN-QD.

Instance GD
J_F DQN-QD NSGA-II MOEA/D MOME EDA-VNS IGSA SPAMA DQCE
102 0.017 0.551% 0.360t 0.474% 0.275% 0.143% 0.532% 0.368%
202 0.028 0.586F 0.398% 0.468t 0.244% 0.129% 0.564t 0.415%
20-3 0.023 0.572% 0.396¢ 0.488% 0.289% 0.187% 0.552% 0.375%
30-2 0.023 0.597% 0.359t 0.508t 0.217% 0.102} 0.553t 0.399%
30-3 0.014 0.535% 0.352% 0.452% 0.234% 0.142% 0.552% 0.357%
40-2 0.019 0.576F 0.363t 0.493t 0.173t 0.062} 0.569t 0.385%
40.3 0.012 0.553t 0.329% 0.433% 0.189% 0.099% 0.529% 0.344%
404 0.023 0.558% 0.368% 0.446% 0.250% 0.165F 0.546F 0.358%
50-3 0.033 0.586F 0.381% 0.502% 0.241% 0.155% 0.571% 0.361%
504 0.041 0.551F 0.375% 0.443% 0.272% 0.214% 0.568% 0.399%
50-5 0.052 0.583t 0.394% 0.488% 0.284% 0.212% 0.584% 0.392%
100-4 0.037 0.622F 0.401% 0.453t 0.259t 0.184% 0.675t 0.393%
100-5 0.026 0.639t 0.405% 0.430% 0.282% 0.207% 0.607t 0.395%
100_6 0.026 0.535% 0.351% 0.413t 0.248% 0.188t 0.570% 0.351%
1007 0.014 0.599t 0.397% 0.405% 0.280% 0.211% 0.598% 0.385%
Mean 0.026 0.576 0.375 0.460 0.249 0.160 0.571 0.379

4.3 XL 50

NEHIE DQN-QD Kfif DFJISP-AGVs MIfLk:, AN SCEIZE P 8 R Ayl LA AT X LL e dr. Jorh, i
B SCHCHE PP i85 S50 1T (NSGA-IT) 491 FsE T o0 it 2 H Anidi b % (MOEA /D) BO JLik 5T = #HE 2 H
PRSI A T . B A F L8, NSGA-TT Al MOEA /D $#%i% /9 il DQN-QD KA RHE R 1. %
N2 HFxr MAP-Elites (MOME) P (1) 3 B2 Ji K] & HAFAE 2= (1 %143 77 55 DQN-QD fR$F— 2. Ak, A SCiE %
ROTEE — BB KBS (IGSA) BY FIEE T 0 A il TH AR AR 3 R 5095 (EDA-VNS) B4 {E st bRy, Bk il
SOEY T IE 2R 1 FISP (K58 TIRHAIRBERE. Hid, IGSA (T 0Bl NS5 DQN-QD {4 —#. i
J&, ARSCIEXNT LT TSR FISP S ENLER 2= I AL SE: B2 Surprisingly-Popular AL ¥ 1&E MAZAZ 5%
(SPAMA) 52 FI%:T DQN WP F L EE (DQCE) 431, AT i By i 2 e B ¥ % R I R ah ek s e, B
PRELFE: FREERUEL ps = 100, 483K/ Ne = 10, PLEHEE K/ batch = 10.

% 3~5 DHIER T AR LEVELE GD, IGD Al HV $8F5 LRIt s . 5 mhse e, o st eln
MR RoR, mfFS + AT hRid 5L S DQN-QD Z [AIF/E R 5 2 5. eI g BT 41, DQN-QD f£ it
A DR S 3 R I B b ARG RE . St — 2B T BRI B 22 5, AR SCR A Wiileoxon #RAIRT 46, LI
ENEAKPFREN o =0.05. B3 6 7751, DQN-QD 7ERERMEREHEA A5 AL, H p (HEKT 0.05, Z45 RN
HEE A AR T DQN-QD s,

BEAh, NIRANRFA R SRR AT fR AL A e FoRase M7 T AR, AAC4: T GD, IGD F1 HV fair I 26,
AW B 1) A AR, W& 4 B, DQN-QD 3 2 AR AL R B R i fe e PE AN S 46 1, HOJCHA 12 9 B
8. W, ASCHEE 5 R4 T S HE TR RICAREE, DLdt— BT AL FLRCR. S B o AN [ SR 1
W EHTRTIY A, ASCH PN H AT I — LA, 455380, DQN-QD 7E i ST B B X AU Sl
JrTH AR T HoAh SR, HUE B B BT AT, RO R R A 1 SR RE.

SEIG 45 LB, DQN-QD BE7E K AR DFISP-AGVs I R EE %, HEEHE TR,
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Figure 4 (Color online) The GD (a), IGD (b), and HV (c) values of all algorithms on different instances.

&4 FIBXEEEM IGD £R. MEFHRRTREE. | TRZWHEEES DQN-QD FEEEMER.
Table 4 IGD results of all comparison algorithms. Bold fonts represent the best values. { indicates that the comparison algorithm is
significantly different from DQN-QD.

Instance IGD
J_F DQN-QD NSGA-II MOEA/D MOME EDA-VNS IGSA SPAMA DQCE
102 0.044 1.037¢ 0.767t 0.915% 0.518% 0.266F 0.973t 0.741%
202 0.062 1.0687 0.810% 0.959t 0.453t 0.246% 1.017% 0.806%
203 0.040 1.074% 0.790% 0.969t 0.528% 0.355% 1.007% 0.772%
30-2 0.061 1.087% 0.730% 0.983t 0.383t 0.194% 1.046% 0.726%
30-3 0.033 1.052% 0.743% 0.971% 0.422% 0.259% 1.014% 0.765%
40-2 0.052 1.111% 0.736F 1.009% 0.317% 0.122} 1.0667 0.735%
403 0.042 1.027% 0.688t 0.944% 0.373t 0.214% 0.957t 0.705%
404 0.044 1.079% 0.754% 1.002} 0.472% 0.312} 1.024% 0.765%
50-3 0.073 1.123% 0.759% 1.043% 0.448% 0.276% 1.077% 0.766%
504 0.079 1.067% 0.764t 1.016% 0.527% 0.401% 1.020% 0.770%
50-5 0.098 1.127% 0.802t 1.067% 0.563t 0.425% 1.074% 0.820%
1004 0.068 1.176% 0.807t 0.979% 0.497% 0.367t 1.154% 0.810%
100-5 0.050 1.177% 0.834t 0.990% 0.532% 0.384% 1.109% 0.838%
100_6 0.054 1.002% 0.732% 0.929% 0.476+ 0.361t 1.066t 0.732%
1007 0.026 1.157% 0.839% 0.992% 0.543t 0.421% 1.126} 0.828%
Mean 0.055 1.097 0.770 0.985 0.470 0.307 1.049 0.772

£ DFJSP-AGVs 1, (AU TALGE ) HARME AL, R3] AGV B 5l & 2 RS S H R 1 2
F 2], DQN-QD i 5l AGV I Hk B 5 bl & 25 PREE AT JRFAIE, A T S5 RV I () — BRI 25 A, A
TSR SE M T FUAINE SR ) 70 A KA. BRI 22 (8] Sk 1 e “BRURA I RR 4R B2z, R Rid e s
TRALE H PR R FI I ST 1 M 22 RE 1, A R0 e AR Ge A T IR H AR 17 5 B N Ry B dee L ) el i, o8 % H
PRI SRFTIL TR R SR TR OS5 M SEHF.

DQN RZSH ) B o W B P R USRAE B, B LR Hlds. L) K AGV 72 ECHNE, [RI4ERL 1 H AR
1650 R0/ AR A O & KT ORAIE (NT, NI). 25 A BAE DQN g 4 T 32 U BOIRAS B =R 1, JFE Q
L R 0 RE SE R 3t R BB 4 BT AACE AN RIRFAE XK DA 70, AR5 Ak 2 STRESR mh Sy A TH AN [R] SRS 4, 2
PERRUR I, TSR R TT R 2] 5z A RE

BEAh, DQN-QD #t—2bilid DQN M4t ah & R TR F T MM, IR RE T, ST AR N
220t o ) S, JE I SR AL A IR R A G MR R ST, AT S 1 A% e T ik R BT P R B EE LS
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&5 FIBAXEEEN HV R, MEAFHRRTREE. 1 TRZzWHEEES DQN-QD F#EEEMER.
Table 5 HYV results of all comparison algorithms. Bold fonts represent the best values. } indicates that the comparison algorithm is
significantly different from DQN-QD.

Instance HV

J_F DQN-QD NSGA-II MOEA/D MOME EDA-VNS IGSA SPAMA DQCE
102 0.918 0.058% 0.204% 0.114% 0.398% 0.657t 0.081% 0.218%
202 0.895 0.040% 0.173t 0.085% 0.462t 0.701% 0.055t 0.178%
20.3 0.953 0.050% 0.210% 0.096t 0.414% 0.592% 0.072t 0.222%
30-2 0.887 0.035t 0.218% 0.073t 0.521% 0.753t 0.047% 0.213%
30-3 0.957 0.042% 0.232% 0.083t 0.518% 0.699t 0.054% 0.218%
40-2 0.907 0.028% 0.226F 0.065t 0.612% 0.8537 0.045% 0.223%
40.3 0.926 0.044t 0.254% 0.086F 0.544% 0.7267 0.072% 0.241%
404 0.939 0.043t 0.228% 0.075% 0.473% 0.642% 0.061% 0.220%
50-3 0.901 0.027% 0.219% 0.058% 0.497% 0.680F 0.044% 0.218%
504 0.898 0.044% 0.223} 0.069t 0.417% 0.536F 0.060t 0.215%
50-5 0.869 0.027% 0.195% 0.049% 0.380F 0.505t 0.041% 0.185%
100_4 0.901 0.017% 0.182% 0.088t 0.431% 0.563t 0.019% 0.183%
100-5 0.934 0.019% 0.174% 0.089% 0.403t 0.552% 0.039t 0.172%
100_6 0.923 0.030% 0.235% 0.109% 0.456+ 0.570t 0.035% 0.235+
1007 0.964 0.018% 0.170% 0.084% 0.396¢ 0.511% 0.022% 0.177%
Mean 0.918 0.035 0.210 0.082 0.462 0.636 0.050 0.208

*o6 HBEREBLUER, ATHONEEIZENEZMESR (BFEKF o=0.05).

Table 6 Results of Friedman’s test for significant differences among algorithms (confidence level oo = 0.05).

GD IGD HV
Algorithm Rank p-value Rank p-value Rank p-value
DQN-QD 1.00 1.00 1.00
NSGA-II 7.67 8.00 8.00
MOEA/D 4.50 4.43 4.37
MOME 600 2.96E—19 600 1.72E—19 6:00 1.67E—19
EDA-VNS 3.00 3.00 3.00
IGSA 2.00 2.00 2.00
SPAMA 7.33 7.00 7.00
DQCE 4.50 4.57 4.63

BURHR 2GR L [RI, AUE ARG BB PR R R U R S T 5 DQN B ML Y FIIsAT, sealx
TPy Plasidefe 5 1) oy Bo 5 2 BIRYE L 10 R0Bcsh.

4.4 BSHOBAMK

AW FCRF Taguchi J77% B3 XFLAR 5 ANSEGHATIAML: #LE KD batch, 2 31%F o, HIHETF H, TOH
T e, LEARM K/ pool. FANSHEINWE 3 MKF, BARIUEN: batch € {3,6,9}, a € {0.001,0.005,0.01},
v € {0.85,0.9,0.95}, € € {0.85,0.9,0.95} Fl pool € {30,50,70}. K EZIRK: L1o(3%) WilsL5e, B 12 44
[ Z54H 4 (batch, a, v, €, pool). MbAh, P HIEM AFEMBL E N ps = 100. 7EFTA MUK SL5] E kA7 i,
CIVEAS AN R S 3 A SR vERe e, B 6 JBon T 5 DMSEE F/KF a3 B, B R LT A R HUE X 5
VEPERERIFEM. b, HEE RN batch X BVEERE I S22 3, RIIFE batch 30IEACT LR 2 M AT e 25k
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5 (FUEIRE) FAEEETRSA EMIBRITATA. (a) 10.2; (b) 20.3; (c) 40_3; (d) 40_4; (e) 50_5; (f) 100_4;
(g) 100_5; (h) 100_6; (i) 100_7.

Figure 5 (Color online) Pareto fronts achieved by all algorithms on different instances. (a) 10-2; (b) 20-3; (c) 40-3; (d) 40_4; (e) 50_5;
(f) 100_4; (g) 100_5; (h) 100-6; (i) 100.7.

LERAR A R, AT B AR AR R RCE . /M) bateh /D 1 PPAb R, (E R RENS A6 50 )32 MM 4 18] 4R
K. ALV TR T, B DQN-QD FiEH RIS A AN batch = 3, a = 0.01, v = 0.85, € = 0.85 Fll
pool = 30.

4.5 ERSCIS

NEGAIE T3 SRS I 2, AR SO DQN-QD 53 Je e 3 ANBARIEATXTLESESS: (1) v-DQN, F2B% DQN &%
ML, SR BENLIERE RIS (2) v-QD, Bk QD HELE, BEEAEFEE P A64ME; (3) v-LS, BRRA KRR RHE T,
AR FH BEMLAS BT 3 0 148 225k R 7 45T DQN-QD 59k S HARARTE #4529 B 1734 GD, 1GD, HV
R Mo B g P ARSI B A, RAT Mean FonHIRAE TG SLB AT PERE. AN, A
SR A B EKCE N 0.05 1 Wilcoxon £ 36438 DQN-QD 52844 8] 1) 25 5.

% 7 740, 7€ GD, IGD Ml HV iX 3 ME#R L, DQN-QD 42440 T 2844 v-DQN, v-QD Hl v-LS. X141 3
TESME SR Fdt— P15 2|50 UE: DQN-QD fEFTA AR IR, HA4, GD 5 0.0362, IGD & 0.0768, HV A
0.887. [ 40.4 F1 50_5 SEBI4F, DQN-QD 7EFTA Hoa sef 35 8 240 T Jofh A8 44, A v-DQN 7RI H BH 2.1
. Heah, % 8 45 T Friedman #5645 R, %K 56 7E 5 2 E/KF 0.05 T3 GD, IGD Fl HV FEFR 251 2%
5, IR rank F p-value. 1, rank BB, U6 BH SRBARPERERRAR; 457 p-value /NTF 0.05, MIFRH] DQN-QD
AT ARRAFAE S M 22 . 45 3R, DQN-QD 1E & TiEbr B3I TxF ek, B B MEaese Tt
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Figure 6 (Color online) Trends of GD (a), IGD (b), and HV (c) under different parameter settings.

* 7 BTHE GD, IGD # HV #EiFLNER. MAFHRRRREE.  FRZWNHEEZXS DQN-QD FHEEEMESR.
Table 7 Results of all variants on GD, IGD, and HV metrics. Bold fonts represent the best values. { indicates that the comparison
algorithm is significantly different from DQN-QD.

Instance GD IGD HV
J_F DQN-QD v-DQN  v-QD v-LS  DQN-QD v-DQN  v-QD v-LS  DQN-QD v-DQN  v-QD v-LS

102 0.0182  0.0921f 0.4819f 0.2402f 0.0465  0.19501 0.9526f 0.5082f 0.9122  0.7305f 0.0940% 0.3952f
202 0.0347  0.08531 0.5879f 0.2982f 0.0730  0.18341 1.08261 0.5249f 0.8742  0.7320f 0.0420% 0.3787f
20.3  0.0242  0.09261 0.4920f 0.2999f 0.0432  0.17661 1.0206% 0.4856f 0.9496  0.7829% 0.06691 0.4573f
302  0.0255  0.0853f 0.5617% 0.2546f 0.0694  0.1833F 1.0818% 0.5484f 0.8727  0.7325f 0.0331f 0.3552%
303 0.0190 0.0788F 0.5408% 0.3413f 0.0466  0.1630f 1.0253t1 0.67291 0.9391  0.7816f 0.0600f 0.2732%
402 0.0209  0.0904f 0.6082% 0.3110f 0.0655  0.1988% 1.14911 0.5260f 0.8810  0.7146f 0.0243F 0.3879%
403 0.0190  0.0693Ff 0.5299% 0.2708f 0.0571  0.1580f 1.0093tf 0.51801 0.8960  0.7601f 0.0542f 0.3878%
404 0.0973  0.1268 0.5804% 0.4063f 0.1909  0.2495 1.1213t 0.7029% 0.7463  0.7026 0.0340f 0.2602%
50.3  0.0434  0.1270% 0.5832f 0.3779% 0.0991  0.2514f 1.1242f 0.63411 0.8642  0.6797F 0.0267f 0.3107%
504  0.0575 0.1272f 0.6218f 0.4691f 0.1106 0.2385t 1.1690f 0.7728f 0.8569  0.6969F 0.02461 0.2069F
50.5  0.0622  0.0786 0.59861 0.3941f 0.1182  0.1434 1.1427f 0.6404t 0.8429  0.8183 0.0275f 0.3054}
1004  0.0417  0.1162f 0.5477f 0.4277f 0.0775  0.2240f 1.1216f 0.7179f 0.8882  0.7117t 0.0259% 0.2386F
1005  0.0306  0.12211 0.5738% 0.4612f 0.0577  0.2282f 1.1535f 0.69761 0.9233  0.71711 0.0296f 0.2606+
1006 0.0330  0.09661 0.5997f 0.3874f 0.0682  0.1972f 1.1751f 0.6552f 0.9000  0.7355f 0.0190% 0.2888%
1007 0.0155  0.0899% 0.5081f 0.3213f 0.0291  0.1847% 1.1276f 0.4884f 0.9589  0.7630f 0.0308% 0.4535%

Mean 0.0362 0.0985 0.5610 0.3507 0.0768 0.1983  1.0971 0.6062 0.8870 0.7373  0.0395  0.3307

Nt A FEARRTE GD, IGD Al HV $8br b BIE D ATRE A &3, AR T A0 E (WA 7),
H R & HEAE 300 (ARSLIZAT I ZE R A . 45 R B, DQN-QD 1EFTA PPl TR AR 35 B 00T AR AR Ak,
IGUE T DQN, QD 1 LS X 3 Fhomsst Sk rERe s A HER, Hrb QD HEZLsTik o 2.
DQN-QD ZEA RIS A AR AR E o] USRI T 2 A G R 3, K EZASEmT.
e QD HEZLMIA XM DQN-QD 5 v-QD XFLLFKE, /£ DFISP-AGVs W, T/FMEYS AGV @1 = el
A, BESZm T RAERE. BT QD AE AN BEAE S5 M LRI 2% (8] HH A7 A RATMEAE, 10 2RI T HLgs =
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% 8 AREEFEEENERH Friedman #RELER (BEKTF o =0.05).

Table 8 Results of Friedman’s test for significant differences among variants (confidence level oo = 0.05).

GD IGD HV
Algorithm Rank p-value Rank p-value Rank p-value
DQN-QD 1.00 1.00 1.00
v-DQN 2.00 2.00 2.00
9.25E—-10 9.25E—10 9.25E—10
v-QD 4.00 4.00 4.00
v-LS 3.00 3.00 3.00
1.0 -
. " N C -
= 1] BRE © w] O =t
v-QD v-Q Vo
031 @ vis o] B % -
0.6 : 0.8 5 ’
i oa
Q 3
&2 © 0.6
O 04 & 9
'}g 0.4+ 4
0.2+ % ki
0.2
0.2
o] B ) 2
T T T T 4 T T T T 0.0 T T %u T
DQN-QD  v-DQN v-QD v-LS DQN-QD  v-DQN v-QD v-LS DQN-QD  v-DQN v-QD v-LS

B 7 (MEREE) METHREEEREEA LM GD (a), IGD (b) 1 HV (c) f&.

Figure 7 (Color online) The GD (a), IGD (b), and HV (c) values of all variants on different instances.
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RESR T R RS, TEAES QD HEZLER = IR R T K BE I IS TE T, 12 5nE B3 sk 7 MR AE sk
PE, R TE 4R 2 2 ) o n] A 2 R VB A AR I AT A 1. I P L A S 38 AR 8 LA T Wik 22 B2 ]
WL R B B

o DQN YIZRHRS IILH. DQN-QD 5 v-DQN Xf ELR B, BX I BOIRS M A m 44 G, DQN 42
BT SREE 2 5] ERIAN TR, ARSI I VR B AR 2 X 45 0 B 2 YR FEIRAS AT AR, A R SRS PR AR T R S ATLATL
il AT R 38E T R A R SR T AR E R R DQN 5L NFI SRS AL B A sh 4 B i@ N, Reis 4 i i
FE AN WTAR Y 1) R 1A S S R 2 5 1), IR R R i S AR e . Ak, AT TR KB AN LA,
TE2 HbR & 2 M PRI v R B H B8 55 1) 72 A RE 0 RN R0

5 ZHRFREIME

FHX] DIFPS-AGVs, A T —FEE TR Q MG BE — 2 RVE SR DU SOk 58 T A A Rg
FE. A A T R AR B PR R R U BRI A DQN i FEHLE], QD BRRE NS HE Bk B R A R AT
BEMOLALAR A BT B AENIASEY] FRISESe R, DON-QD EFIUA B Sult ik, MR 1 4%~15% KITERESETT.
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(R P SXAE AR KRBT ] LA — 2D IRT, R BeTE BAT B A 45 2R SR ms.
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Intelligent approach for distributed flexible job-shop scheduling with
deep reinforcement learning and quality-diversity optimization
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Abstract In the field of intelligent manufacturing, integrated scheduling of automated guided vehicles (AGVs) and
machines significantly impacts makespan and energy consumption. However, existing scheduling methods struggle to
efficiently coordinate AGV transportation and task execution, especially in distributed flexible job-shop scheduling (DFJSP)
scenarios, where this challenge is particularly pronounced. To address this issue, this paper proposes a deep reinforcement
learning-enhanced quality-diversity (QD) optimization algorithm that effectively leverages transportation and machine
behavioral features to generate high-quality and diverse Pareto-optimal solutions. First, a knowledge-assisted collaborative
heuristic strategy is designed to optimize the scheduling of jobs, machines, and factories by considering AGV transportation
characteristics, thereby improving overall solution quality. Second, to address the low utilization rate of search operators,
an intelligent selection mechanism based on deep reinforcement learning is introduced to overcome the limitations of random
selection, enhancing both search efficiency and optimization performance. Simulation experiments demonstrate that the
proposed algorithm significantly outperforms existing methods in optimizing makespan and energy consumption, validating
its effectiveness.

Keywords distributed flexible job-shop scheduling, automated guided vehicle transportation, quality-diversity
optimization, deep reinforcement learning, multi-objective optimization



